whisper-medium-swa / README.md
discoverylabs's picture
End of training
f2b44ec verified
metadata
library_name: transformers
language:
  - hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Swahili Medium
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: sw
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 25.261512288203786

Whisper Swahili Medium

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3519
  • Wer: 25.2615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3595 0.4342 1000 0.4586 31.5976
0.3001 0.8684 2000 0.3794 27.8295
0.1451 1.3026 3000 0.3701 26.1972
0.1469 1.7369 4000 0.3519 25.2615

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0