metadata
language: en
license: mit
base_model: answerdotai/ModernBERT-large
tags:
- token-classification
- ModernBERT-large
datasets:
- disham993/ElectricalNER
metrics:
- epoch: 1
- eval_precision: 0.9170362009191324
- eval_recall: 0.917258064516129
- eval_f1: 0.9171471193000846
- eval_accuracy: 0.965673339950132
- eval_runtime: 3.7584
- eval_samples_per_second: 401.504
- eval_steps_per_second: 6.386
disham993/electrical-ner-modernbert-large
Model description
This model is fine-tuned from answerdotai/ModernBERT-large for token-classification tasks.
Training Data
The model was trained on the disham993/ElectricalNER dataset.
Model Details
- Base Model: answerdotai/ModernBERT-large
- Task: token-classification
- Language: en
- Dataset: disham993/ElectricalNER
Training procedure
Training hyperparameters
[Please add your training hyperparameters here]
Evaluation results
Metrics\n- epoch: 1.0\n- eval_precision: 0.9170362009191324\n- eval_recall: 0.917258064516129\n- eval_f1: 0.9171471193000846\n- eval_accuracy: 0.965673339950132\n- eval_runtime: 3.7584\n- eval_samples_per_second: 401.504\n- eval_steps_per_second: 6.386
Usage
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("disham993/electrical-ner-modernbert-large")
model = AutoModel.from_pretrained("disham993/electrical-ner-modernbert-large")
Limitations and bias
[Add any known limitations or biases of the model]
Training Infrastructure
[Add details about training infrastructure used]
Last update
2024-12-30