disi-unibo-nlp

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0548
  • Accuracy: 0.9822
  • F1: 0.8507
  • Precision: 0.9301
  • Recall: 0.7838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.124 0.2899 1000 0.1032 0.9671 0.7090 0.8324 0.6174
0.1004 0.5799 2000 0.0855 0.9721 0.7551 0.8769 0.6631
0.0858 0.8698 3000 0.0737 0.9757 0.7873 0.9102 0.6937
0.0736 1.1598 4000 0.0696 0.9786 0.8196 0.9031 0.7502
0.0696 1.4497 5000 0.0639 0.9795 0.8294 0.8996 0.7694
0.068 1.7396 6000 0.0606 0.9812 0.8401 0.9385 0.7604
0.0634 2.0296 7000 0.0593 0.9809 0.8414 0.9123 0.7808
0.0565 2.3195 8000 0.0568 0.9820 0.8485 0.9318 0.7790
0.0584 2.6095 9000 0.0553 0.9822 0.8512 0.9296 0.7850
0.0568 2.8994 10000 0.0548 0.9822 0.8507 0.9301 0.7838

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
142M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for disi-unibo-nlp/deberta-foodex2-coder

Finetuned
(121)
this model