File size: 3,092 Bytes
ef5da2a d08db9b ef5da2a d08db9b ef5da2a d08db9b 8d6ff0b 404c3b9 d08db9b ecf6816 d08db9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- en
tags:
- audio
- automatic-speech-recognition
license: mit
library_name: ctranslate2
---
# Distil-Whisper: distil-large-v3 for CTranslate2
This repository contains the model weights for [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
converted to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format. CTranslate2 is a fast inference engine for
Transformer models and is the supported backend for the [Faster-Whisper](https://github.com/systran/faster-whisper) package.
Compared to previous Distil-Whisper releases, distil-large-v3 is specifically designed to be compatible
with the OpenAI Whisper long-form transcription algorithm. In our benchmark over 4 out-of-distribution datasets, distil-large-v3
outperformed distil-large-v2 by 5% WER average. Thus, you can expect significant performance gains by switching to this
latest checkpoint.
## Usage
To use the model in Faster-Whisper, first install the PyPi package according to the [official instructions](https://github.com/SYSTRAN/faster-whisper#installation).
For this example, we'll also install 🤗 Datasets to load a toy audio dataset from the Hugging Face Hub:
```bash
pip install --upgrade pip
pip install --upgrade git+https://github.com/SYSTRAN/faster-whisper datasets[audio]
```
The following code snippet loads the distil-large-v3 model and runs inference on an example file from the LibriSpeech ASR
dataset:
```python
import torch
from faster_whisper import WhisperModel
from datasets import load_dataset
# define our torch configuration
device = "cuda:0" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if torch.cuda.is_available() else "float32"
# load model on GPU if available, else cpu
model = WhisperModel("distil-large-v3", device=device, compute_type=compute_type)
# load toy dataset for example
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
sample = dataset[1]["audio"]["path"]
segments, info = model.transcribe(sample, beam_size=1)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
```python
segments, info = model.transcribe("audio.mp3", beam_size=1)
```
## Model Details
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
## License
Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
## Citation
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
```
@misc{gandhi2023distilwhisper,
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
year={2023},
eprint={2311.00430},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|