Edit model card

Summary

Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.

Model Architecture:

  • Architecture: GPT2LMHeadModel
  • Total Parameters: 124,439,808
  • Data Type (dtype): torch.bfloat16
  • Model Size: 0.24 GB

Benchmark Metrics Comparison

| Metric | | | :--- |

Resource Usage Comparison

  • VRAM Use: 7.7870 GB

Distillation (Teacher -> Student) Architecture Difference:

  • Architecture: GPT2LMHeadModel -> GPT2LMHeadModel
  • Total Parameters: 124,439,808 -> 124,439,808
  • Data Type (dtype): torch.bfloat16 -> torch.bfloat16
  • Model Size: 0.24 GB -> 0.24 GB
Module Diff Details


Train Dataset

Trained on 145,744,973 tokens from the wikimedia/wikipedia dataset.

  • Num Samples: 247,500
  • Subset: 20231101.en
  • Split: train

Training Objective

DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=linear))

Hyperparameters

The following hyperparameters were used during training:

Expand
  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_warmup_ratio: 0.5
  • num_epochs: 1.0
  • distillation_objective: DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=linear))
  • train_embeddings: True
  • lr_scheduler: <torch.optim.lr_scheduler.LambdaLR object at 0x7fa4f426c3d0>
  • student_model_name_or_path: None
  • student_config_name_or_path: None
  • student_model_config: None
  • reinitialize_weights: None
  • copy_teacher_modules: [('lm_head', False)]
  • student_model_as_bitnet: True
  • dropout: None
  • teacher_model_name_or_path: gpt2
  • teacher_load_in_8bit: False
  • teacher_load_in_4bit: False
  • dataset_uri: wikimedia/wikipedia
  • dataset_subset: 20231101.en
  • dataset_split: train
  • dataset_column_name: text
  • dataset_sample_size: 250000
  • dataset_test_size: 0.01
  • gradient_accumulation_steps: 1
  • weight_decay: 0.0
  • max_grad_norm: 1.0
  • warmup_ratio: 0.5
  • warmup_steps: 0
  • gradient_checkpointing: True

Framework Versions

  • Distily 0.3.0
  • Transformers 4.44.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
Downloads last month
14
Safetensors
Model size
124M params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for distily/distily_test_attn_linear

Finetuned
(1179)
this model

Dataset used to train distily/distily_test_attn_linear