Summary
Distilled with Distily library using teacher model gpt2 on dataset wikimedia/wikipedia.
Model Architecture:
- Architecture:
GPT2LMHeadModel
- Total Parameters: 124,439,808
- Data Type (dtype): torch.bfloat16
- Model Size: 0.24 GB
Benchmark Metrics Comparison
Metric | attn_layer_mapper=all, attn_loss_fn=logsum, attn_projector=miles | attn_layer_mapper=all, attn_loss_fn=raw_mse, attn_projector=miles | teacher |
---|---|---|---|
ai2_arc (acc) | 0.228 | 0.256 | 0.304 |
ai2_arc (acc_norm) | 0.258 | 0.267 | 0.309 |
arc_challenge (acc) | 0.186 | 0.177 | 0.184 |
arc_challenge (acc_norm) | 0.227 | 0.202 | 0.214 |
arc_easy (acc) | 0.27 | 0.335 | 0.424 |
arc_easy (acc_norm) | 0.288 | 0.332 | 0.405 |
boolq (acc) | 0.375 | 0.377 | 0.541 |
cola (mcc) | 0.0 | 0.0 | 0.009 |
glue (acc) | 0.454 | 0.444 | 0.41 |
glue (f1) | 0.0 | 0.279 | 0.526 |
glue (mcc) | 0.0 | 0.0 | 0.009 |
hellaswag (acc) | 0.282 | 0.302 | 0.337 |
hellaswag (acc_norm) | 0.275 | 0.308 | 0.384 |
mnli (acc) | 0.326 | 0.331 | 0.323 |
mnli_mismatch (acc) | 0.295 | 0.367 | 0.344 |
mrpc (acc) | 0.316 | 0.336 | 0.515 |
mrpc (f1) | 0.0 | 0.075 | 0.631 |
qnli (acc) | 0.527 | 0.519 | 0.472 |
qqp (acc) | 0.673 | 0.515 | 0.34 |
qqp (f1) | 0.0 | 0.363 | 0.483 |
rte (acc) | 0.52 | 0.57 | 0.516 |
sst2 (acc) | 0.492 | 0.498 | 0.511 |
wikitext (bits_per_byte) | 1.888 | 1.273 | 0.98 |
wikitext (byte_perplexity) | 3.701 | 2.416 | 1.973 |
wikitext (word_perplexity) | 1094.0 | 111.9 | 37.82 |
wnli (acc) | 0.437 | 0.521 | 0.451 |
Resource Usage Comparison
- VRAM Use: 7.7871 GB
Distillation (Teacher -> Student) Architecture Difference:
- Architecture:
GPT2LMHeadModel
->GPT2LMHeadModel
- Total Parameters: 124,439,808 -> 124,439,808
- Data Type (dtype): torch.bfloat16 -> torch.bfloat16
- Model Size: 0.24 GB -> 0.24 GB
Module Diff Details
Train Dataset
Trained on 145,744,973 tokens from the wikimedia/wikipedia dataset.
- Num Samples:
247,500
- Subset:
20231101.en
- Split:
train
Training Objective
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=miles))
Hyperparameters
The following hyperparameters were used during training:
Expand
- learning_rate:
0.0001
- train_batch_size:
4
- eval_batch_size:
8
- seed:
42
- optimizer:
Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type:
cosine_with_min_lr
- lr_scheduler_warmup_ratio:
0.5
- num_epochs:
1.0
- distillation_objective:
DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=25.0, loss_fn=cos, layer_mapper=layer-2, projector=miles))
- train_embeddings:
True
- lr_scheduler:
<torch.optim.lr_scheduler.LambdaLR object at 0x7fae8845cd00>
- student_model_name_or_path:
None
- student_config_name_or_path:
None
- student_model_config:
None
- reinitialize_weights:
None
- copy_teacher_modules:
[('lm_head', False)]
- student_model_as_bitnet:
True
- dropout:
None
- teacher_model_name_or_path:
gpt2
- teacher_load_in_8bit:
False
- teacher_load_in_4bit:
False
- dataset_uri:
wikimedia/wikipedia
- dataset_subset:
20231101.en
- dataset_split:
train
- dataset_column_name:
text
- dataset_sample_size:
250000
- dataset_test_size:
0.01
- gradient_accumulation_steps:
1
- weight_decay:
0.0
- max_grad_norm:
1.0
- warmup_ratio:
0.5
- warmup_steps:
0
- gradient_checkpointing:
True
Framework Versions
- Distily 0.3.0
- Transformers 4.44.0
- Pytorch 2.3.0
- Datasets 2.21.0
- Downloads last month
- 33
Model tree for distily/distily_test_attn_miles
Base model
openai-community/gpt2