djagatiya's picture
Initial checkin
5c41f6b
2022-11-16 17:06:48,577 - __main__ - INFO - Label List:['O', 'B-PERSON', 'I-PERSON', 'B-NORP', 'I-NORP', 'B-FAC', 'I-FAC', 'B-ORG', 'I-ORG', 'B-GPE', 'I-GPE', 'B-LOC', 'I-LOC', 'B-PRODUCT', 'I-PRODUCT', 'B-DATE', 'I-DATE', 'B-TIME', 'I-TIME', 'B-PERCENT', 'I-PERCENT', 'B-MONEY', 'I-MONEY', 'B-QUANTITY', 'I-QUANTITY', 'B-ORDINAL', 'I-ORDINAL', 'B-CARDINAL', 'I-CARDINAL', 'B-EVENT', 'I-EVENT', 'B-WORK_OF_ART', 'I-WORK_OF_ART', 'B-LAW', 'I-LAW', 'B-LANGUAGE', 'I-LANGUAGE']
2022-11-16 17:06:55,367 - __main__ - INFO - Dataset({
features: ['id', 'words', 'ner_tags'],
num_rows: 75187
})
2022-11-16 17:06:56,175 - __main__ - INFO - Dataset({
features: ['id', 'words', 'ner_tags'],
num_rows: 9479
})
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file vocab.json
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file merges.txt
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file tokenizer.json
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file added_tokens.json
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file special_tokens_map.json
2022-11-16 17:06:56,185 - transformers.tokenization_utils_base - INFO - loading file tokenizer_config.json
2022-11-16 17:06:56,250 - __main__ - INFO - {'input_ids': [[1, 653, 761, 9, 3783, 17487, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 166, 32928, 9603, 47, 7, 1183, 10, 780, 5403, 9, 15581, 436, 479, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 15584, 3082, 3192, 23959, 15, 5, 2860, 3875, 9, 436, 4832, 41876, 38628, 9, 15643, 24610, 4743, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 15125, 6764, 15, 15643, 24610, 4743, 16, 5, 23001, 7, 5, 41184, 6304, 25132, 23909, 479, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 85, 16, 14092, 9, 10, 2270, 11235, 459, 2156, 5929, 1690, 523, 293, 2156, 10, 1307, 1062, 18185, 8, 30943, 9368, 2156, 8, 5, 2860, 2298, 2156, 566, 97, 383, 479, 2]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWhat', 'Ġkind', 'Ġof', 'Ġmemory', 'Ġ?', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWe', 'Ġrespectfully', 'Ġinvite', 'Ġyou', 'Ġto', 'Ġwatch', 'Ġa', 'Ġspecial', 'Ġedition', 'Ġof', 'ĠAcross', 'ĠChina', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠWW', 'ĠII', 'ĠLand', 'marks', 'Ġon', 'Ġthe', 'ĠGreat', 'ĠEarth', 'Ġof', 'ĠChina', 'Ġ:', 'ĠEternal', 'ĠMemories', 'Ġof', 'ĠTai', 'hang', 'ĠMountain', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
2022-11-16 17:06:56,251 - __main__ - INFO - ['[CLS]', 'ĠStanding', 'Ġtall', 'Ġon', 'ĠTai', 'hang', 'ĠMountain', 'Ġis', 'Ġthe', 'ĠMonument', 'Ġto', 'Ġthe', 'ĠHundred', 'ĠReg', 'iments', 'ĠOffensive', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
2022-11-16 17:06:56,252 - __main__ - INFO - ['[CLS]', 'ĠIt', 'Ġis', 'Ġcomposed', 'Ġof', 'Ġa', 'Ġprimary', 'Ġste', 'le', 'Ġ,', 'Ġsecondary', 'Ġst', 'el', 'es', 'Ġ,', 'Ġa', 'Ġhuge', 'Ġround', 'Ġsculpture', 'Ġand', 'Ġbeacon', 'Ġtower', 'Ġ,', 'Ġand', 'Ġthe', 'ĠGreat', 'ĠWall', 'Ġ,', 'Ġamong', 'Ġother', 'Ġthings', 'Ġ.', '[SEP]']
2022-11-16 17:06:56,252 - __main__ - INFO - -------------
2022-11-16 17:06:56,252 - __main__ - INFO - ['[CLS]', 'ĠWe', 'Ġrespectfully', 'Ġinvite', 'Ġyou', 'Ġto', 'Ġwatch', 'Ġa', 'Ġspecial', 'Ġedition', 'Ġof', 'ĠAcross', 'ĠChina', 'Ġ.', '[SEP]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]', '[PAD]']
2022-11-16 17:06:56,252 - __main__ - INFO - [None, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None]
2022-11-16 17:07:05,682 - __main__ - INFO - {'id': [0, 1, 2, 3, 4], 'words': [['What', 'kind', 'of', 'memory', '?'], ['We', 'respectfully', 'invite', 'you', 'to', 'watch', 'a', 'special', 'edition', 'of', 'Across', 'China', '.'], ['WW', 'II', 'Landmarks', 'on', 'the', 'Great', 'Earth', 'of', 'China', ':', 'Eternal', 'Memories', 'of', 'Taihang', 'Mountain'], ['Standing', 'tall', 'on', 'Taihang', 'Mountain', 'is', 'the', 'Monument', 'to', 'the', 'Hundred', 'Regiments', 'Offensive', '.'], ['It', 'is', 'composed', 'of', 'a', 'primary', 'stele', ',', 'secondary', 'steles', ',', 'a', 'huge', 'round', 'sculpture', 'and', 'beacon', 'tower', ',', 'and', 'the', 'Great', 'Wall', ',', 'among', 'other', 'things', '.']], 'ner_tags': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0], [31, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32], [0, 0, 0, 11, 12, 0, 31, 32, 32, 32, 32, 32, 32, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0]], 'input_ids': [[1, 653, 761, 9, 3783, 17487, 2], [1, 166, 32928, 9603, 47, 7, 1183, 10, 780, 5403, 9, 15581, 436, 479, 2], [1, 15584, 3082, 3192, 23959, 15, 5, 2860, 3875, 9, 436, 4832, 41876, 38628, 9, 15643, 24610, 4743, 2], [1, 15125, 6764, 15, 15643, 24610, 4743, 16, 5, 23001, 7, 5, 41184, 6304, 25132, 23909, 479, 2], [1, 85, 16, 14092, 9, 10, 2270, 11235, 459, 2156, 5929, 1690, 523, 293, 2156, 10, 1307, 1062, 18185, 8, 30943, 9368, 2156, 8, 5, 2860, 2298, 2156, 566, 97, 383, 479, 2]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'labels': [[-100, 0, 0, 0, 0, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, -100], [-100, 31, 32, 32, -100, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, -100, 32, -100], [-100, 0, 0, 0, 11, -100, 12, 0, 31, 32, 32, 32, 32, 32, -100, 32, 0, -100], [-100, 0, 0, 0, 0, 0, 0, 0, -100, 0, 0, 0, -100, -100, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 32, 32, 0, 0, 0, 0, 0, -100]]}
2022-11-16 17:07:06,902 - transformers.configuration_utils - INFO - loading configuration file /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100/config.json
2022-11-16 17:07:06,904 - transformers.configuration_utils - INFO - Model config DebertaConfig {
"_name_or_path": "/content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100",
"architectures": [
"DebertaForTokenClassification"
],
"attention_probs_dropout_prob": 0.1,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 768,
"id2label": {
"0": "O",
"1": "B-PERSON",
"2": "I-PERSON",
"3": "B-NORP",
"4": "I-NORP",
"5": "B-FAC",
"6": "I-FAC",
"7": "B-ORG",
"8": "I-ORG",
"9": "B-GPE",
"10": "I-GPE",
"11": "B-LOC",
"12": "I-LOC",
"13": "B-PRODUCT",
"14": "I-PRODUCT",
"15": "B-DATE",
"16": "I-DATE",
"17": "B-TIME",
"18": "I-TIME",
"19": "B-PERCENT",
"20": "I-PERCENT",
"21": "B-MONEY",
"22": "I-MONEY",
"23": "B-QUANTITY",
"24": "I-QUANTITY",
"25": "B-ORDINAL",
"26": "I-ORDINAL",
"27": "B-CARDINAL",
"28": "I-CARDINAL",
"29": "B-EVENT",
"30": "I-EVENT",
"31": "B-WORK_OF_ART",
"32": "I-WORK_OF_ART",
"33": "B-LAW",
"34": "I-LAW",
"35": "B-LANGUAGE",
"36": "I-LANGUAGE"
},
"initializer_range": 0.02,
"intermediate_size": 3072,
"label2id": {
"B-CARDINAL": 27,
"B-DATE": 15,
"B-EVENT": 29,
"B-FAC": 5,
"B-GPE": 9,
"B-LANGUAGE": 35,
"B-LAW": 33,
"B-LOC": 11,
"B-MONEY": 21,
"B-NORP": 3,
"B-ORDINAL": 25,
"B-ORG": 7,
"B-PERCENT": 19,
"B-PERSON": 1,
"B-PRODUCT": 13,
"B-QUANTITY": 23,
"B-TIME": 17,
"B-WORK_OF_ART": 31,
"I-CARDINAL": 28,
"I-DATE": 16,
"I-EVENT": 30,
"I-FAC": 6,
"I-GPE": 10,
"I-LANGUAGE": 36,
"I-LAW": 34,
"I-LOC": 12,
"I-MONEY": 22,
"I-NORP": 4,
"I-ORDINAL": 26,
"I-ORG": 8,
"I-PERCENT": 20,
"I-PERSON": 2,
"I-PRODUCT": 14,
"I-QUANTITY": 24,
"I-TIME": 18,
"I-WORK_OF_ART": 32,
"O": 0
},
"layer_norm_eps": 1e-07,
"max_position_embeddings": 512,
"max_relative_positions": -1,
"model_type": "deberta",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 0,
"pooler_dropout": 0,
"pooler_hidden_act": "gelu",
"pooler_hidden_size": 768,
"pos_att_type": [
"c2p",
"p2c"
],
"position_biased_input": false,
"relative_attention": true,
"torch_dtype": "float32",
"transformers_version": "4.23.0",
"type_vocab_size": 0,
"vocab_size": 50265
}
2022-11-16 17:07:06,933 - transformers.modeling_utils - INFO - loading weights file /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100/pytorch_model.bin
2022-11-16 17:07:08,422 - transformers.modeling_utils - INFO - All model checkpoint weights were used when initializing DebertaForTokenClassification.
2022-11-16 17:07:08,422 - transformers.modeling_utils - INFO - All the weights of DebertaForTokenClassification were initialized from the model checkpoint at /content/NER-System/models/microsoft/deberta-base_1668615764.565312/checkpoint-14100.
If your task is similar to the task the model of the checkpoint was trained on, you can already use DebertaForTokenClassification for predictions without further training.
2022-11-16 17:07:08,500 - __main__ - INFO - DebertaForTokenClassification(
(deberta): DebertaModel(
(embeddings): DebertaEmbeddings(
(word_embeddings): Embedding(50265, 768, padding_idx=0)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
(encoder): DebertaEncoder(
(layer): ModuleList(
(0): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(1): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(2): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(3): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(4): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(5): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(6): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(7): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(8): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(9): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(10): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(11): DebertaLayer(
(attention): DebertaAttention(
(self): DisentangledSelfAttention(
(in_proj): Linear(in_features=768, out_features=2304, bias=False)
(pos_dropout): StableDropout()
(pos_proj): Linear(in_features=768, out_features=768, bias=False)
(pos_q_proj): Linear(in_features=768, out_features=768, bias=True)
(dropout): StableDropout()
)
(output): DebertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
(intermediate): DebertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): DebertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): DebertaLayerNorm()
(dropout): StableDropout()
)
)
)
(rel_embeddings): Embedding(1024, 768)
)
)
(dropout): Dropout(p=0.1, inplace=False)
(classifier): Linear(in_features=768, out_features=37, bias=True)
)
2022-11-16 17:07:08,521 - __main__ - INFO - CONFIGS:{
"output_dir": "./eval_test1",
"per_device_train_batch_size": 16,
"per_device_eval_batch_size": 16,
"save_total_limit": 2,
"num_train_epochs": 3,
"seed": 1,
"load_best_model_at_end": true,
"evaluation_strategy": "epoch",
"save_strategy": "epoch",
"learning_rate": 2e-05,
"weight_decay": 0.01,
"fp16": true,
"logging_steps": 469.0
}
2022-11-16 17:07:08,522 - transformers.training_args - INFO - PyTorch: setting up devices
2022-11-16 17:07:08,557 - transformers.training_args - INFO - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
2022-11-16 17:07:11,000 - transformers.trainer - INFO - Using cuda_amp half precision backend
2022-11-16 17:07:11,001 - __main__ - INFO - [[ MODEL EVALUATION ]]
2022-11-16 17:07:11,001 - transformers.trainer - INFO - The following columns in the evaluation set don't have a corresponding argument in `DebertaForTokenClassification.forward` and have been ignored: words, ner_tags, id. If words, ner_tags, id are not expected by `DebertaForTokenClassification.forward`, you can safely ignore this message.
2022-11-16 17:07:11,004 - transformers.trainer - INFO - ***** Running Evaluation *****
2022-11-16 17:07:11,004 - transformers.trainer - INFO - Num examples = 9479
2022-11-16 17:07:11,004 - transformers.trainer - INFO - Batch size = 16
2022-11-16 17:07:11,007 - transformers.tokenization_utils_base - WARNING - You're using a DebertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
2022-11-16 17:07:33,916 - __main__ - INFO - {'eval_loss': 0.06115942820906639, 'eval_precision': 0.8953762782973517, 'eval_recall': 0.9100115483699032, 'eval_f1': 0.902634593356243, 'eval_accuracy': 0.9848035428915137, 'eval_runtime': 22.906, 'eval_samples_per_second': 413.822, 'eval_steps_per_second': 25.888, 'step': 0}
2022-11-16 17:07:33,916 - transformers.trainer - INFO - The following columns in the test set don't have a corresponding argument in `DebertaForTokenClassification.forward` and have been ignored: words, ner_tags, id. If words, ner_tags, id are not expected by `DebertaForTokenClassification.forward`, you can safely ignore this message.
2022-11-16 17:07:33,918 - transformers.trainer - INFO - ***** Running Prediction *****
2022-11-16 17:07:33,918 - transformers.trainer - INFO - Num examples = 9479
2022-11-16 17:07:33,918 - transformers.trainer - INFO - Batch size = 16
2022-11-16 17:07:59,630 - __main__ - INFO - precision recall f1-score support
CARDINAL 0.86 0.87 0.86 935
DATE 0.85 0.89 0.87 1602
EVENT 0.65 0.78 0.71 63
FAC 0.74 0.80 0.77 135
GPE 0.97 0.96 0.96 2240
LANGUAGE 0.83 0.68 0.75 22
LAW 0.71 0.68 0.69 40
LOC 0.74 0.77 0.76 179
MONEY 0.88 0.90 0.89 314
NORP 0.94 0.97 0.95 841
ORDINAL 0.79 0.87 0.83 195
ORG 0.92 0.92 0.92 1795
PERCENT 0.92 0.92 0.92 349
PERSON 0.95 0.95 0.95 1988
PRODUCT 0.65 0.76 0.70 76
QUANTITY 0.77 0.82 0.80 105
TIME 0.62 0.65 0.63 212
WORK_OF_ART 0.64 0.69 0.66 166
micro avg 0.90 0.91 0.90 11257
macro avg 0.80 0.83 0.81 11257
weighted avg 0.90 0.91 0.90 11257