djamina's picture
Training complete
240f058 verified
|
raw
history blame
1.92 kB
metadata
base_model: camembert/camembert-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: relatives_labels-cbert_finetuned
    results: []

relatives_labels-cbert_finetuned

This model is a fine-tuned version of camembert/camembert-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6900
  • Accuracy: 0.5859
  • Precision: 0.2929
  • Recall: 0.5
  • F1: 0.3694

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 49 0.7393 0.5859 0.2929 0.5 0.3694
No log 2.0 98 0.7367 0.5859 0.2929 0.5 0.3694
No log 3.0 147 0.6921 0.5859 0.2929 0.5 0.3694
No log 4.0 196 0.6894 0.5859 0.2929 0.5 0.3694
No log 5.0 245 0.6900 0.5859 0.2929 0.5 0.3694

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1