binary_every_exp / README.md
djsull's picture
Update README.md
e715eff verified
|
raw
history blame
1.79 kB
metadata
metrics:
  - f1
model-index:
  - name: binary_every_exp
    results: []

binary_every_exp

This model is a fine-tuned version of monologg/kobigbird-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0081
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 19 0.0709 0.96 1.0 0.9796 0.9857
No log 2.0 38 0.0647 1.0 0.9583 0.9787 0.9857
No log 3.0 57 0.0095 1.0 1.0 1.0 1.0
No log 4.0 76 0.0166 1.0 0.9583 0.9787 0.9857
No log 5.0 95 0.0081 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1