MN-Chinofun / README.md
djuna's picture
Adding Evaluation Results (#2)
6a141b7 verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - RozGrov/NemoDori-v0.2.2-12B-MN-ties
  - spow12/ChatWaifu_v1.4
  - Nohobby/MN-12B-Siskin-v0.2
  - GalrionSoftworks/Canidori-12B-v1
  - ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1
model-index:
  - name: MN-Chinofun
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 61.1
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 28.48
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 10.5
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 6.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.38
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 28.92
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=djuna/MN-Chinofun
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the Model Stock merge method using ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1 as a base.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: Nohobby/MN-12B-Siskin-v0.2
  - model: spow12/ChatWaifu_v1.4
  - model: RozGrov/NemoDori-v0.2.2-12B-MN-ties
  - model: GalrionSoftworks/Canidori-12B-v1
merge_method: model_stock
base_model: ArliAI/Mistral-Nemo-12B-ArliAI-RPMax-v1.1
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 24.26
IFEval (0-Shot) 61.10
BBH (3-Shot) 28.48
MATH Lvl 5 (4-Shot) 10.50
GPQA (0-shot) 6.15
MuSR (0-shot) 10.38
MMLU-PRO (5-shot) 28.92