DRAFT
Soudscapes via AudioGen
|
|
---|---|
See level classhing on the iceberg of lighhouse |
|
Loug scene of restaurant in medieval city |
|
Nikolskoe bei der Wasser an der Havel in Berlin-Zehlendorf, nahe der Pfaueninsel. Beliebtes Berliner Ausflugsziel |
Draft after this line
Following examples are the Harvard sentences synthesized via StyleTTS2 - using Mimic-3 or accelerated 4x speed Mimic-3 styles or Librispeech segments
Trial 3
New Tablo - tts_harvard.py =======================================================
Prompt - ( |
StyleTTS2 - (First 20 Harvard Sentences) |
---|---|
Mimic-3 English |
StyleTTS - (Mimic-3 English) From Above |
Mimic-3 English 4x |
StyleTTS2 - (Mimic-3 English 4x) |
Human |
StyleTTS2 - (Human) |
Mimic-3 Foreign |
StyleTTS2 - (Mimic-3 Foreign) |
Mimix-3 Foreign 4x |
StyleTTS2 - (Mimic-3 Foreign 4x) |
Please edit for MOS annotation
|
|
0 |
1 |
2 |
3 |
4 5 |
6 7 |
8 |
9 |
10 |
11 |
4 4
1 4
5 5
5 4
3 4
1 4
2 3
1 4
5 4
5 4
2 3
1 2
A B
4* 5
3* 5
5 5
5 4
2 5
1 4
*ignoring the breath-noise between sentences
DEBUG Multi-sentence Foreign Langs
Language & Call |
TxT |
---|---|
|
δέομαι ὑμῶν, ὦ ἄνδρες Ἀθηναῖοι, ἐθελῆσαί μου μετ᾽ εὐνοίας ἀκοῦσαι λέγοντος, ὑπολογιζομένους τό τε μέγεθος τοῦ κινδύνου καὶ τὸ πλῆθος τῶν αἰτιῶν πρὸς ἂς ἀπολογήσασθαί με δεῖ, καὶ τὰς τέχνας καὶ τὰς κατασκευὰς τοῦ κατηγόρου καὶ τὴν ὠμότητα, ὃς ἐτόλμησε παρακελεύσασθαι |
Native English Voices TTS - Disabling DIffusionProcess
Diffusion steps = 7 / artficially generated styles how mimic3 english 4x speed - python
The Diffusion of style in StyleTTS2 adds wobbliness, disabling the diffusion and hence using only ref_s
w/o call of DiffusionProcess
has sounding serious voices.
No DIffusion (only use ref_s, alpha=beta=0) in msinference.py |
Full DIffusion (only use ref, alpha=beta=1) in msinference.py |
---|---|
Non native English TTS
A voice is a style vector given to StyleTTS2. All voices below are artificial. Their style vectors are themselves synthesized by another TTS System - namely Mimic3.
# first start Flask api.py
python tts.py --text a.txt --voice "af_ZA_google-nwu_0184"
voice | TTS | ||
---|---|---|---|
0 |
af_ZA_google-nwu_0184 |
|
|
1 |
af_ZA_google-nwu_1919 |
|
|
2 |
af_ZA_google-nwu_2418 |
|
|
3 |
af_ZA_google-nwu_6590 |
|
|
4 |
af_ZA_google-nwu_7130 |
|
|
5 |
af_ZA_google-nwu_7214 |
|
|
6 |
af_ZA_google-nwu_8148 |
|
|
7 |
af_ZA_google-nwu_8924 |
|
|
8 |
af_ZA_google-nwu_8963 |
|
|
9 |
bn_multi_00737 |
|
|
10 |
bn_multi_00779 |
|
|
11 |
bn_multi_01232 |
|
|
12 |
bn_multi_01701 |
|
|
13 |
bn_multi_03042 |
|
|
14 |
bn_multi_0834 |
|
|
15 |
bn_multi_1010 |
|
|
16 |
bn_multi_3108 |
|
|
17 |
bn_multi_3713 |
|
|
18 |
bn_multi_3958 |
|
|
19 |
bn_multi_4046 |
|
|
20 |
bn_multi_4811 |
|
|
21 |
bn_multi_5958 |
|
|
22 |
bn_multi_9169 |
|
|
23 |
bn_multi_rm |
|
|
24 |
yo_openbible |
|
|
25 |
de_DE_m-ailabs_eva_k |
|
|
26 |
de_DE_m-ailabs_karlsson |
|
|
27 |
de_DE_m-ailabs_ramona_deininger |
|
|
28 |
de_DE_m-ailabs_rebecca_braunert_plunkett |
|
|
29 |
de_DE_thorsten-emotion_amused |
|
|
30 |
de_DE_thorsten-emotion_angry |
|
|
31 |
de_DE_thorsten-emotion_disgusted |
|
|
32 |
de_DE_thorsten-emotion_drunk |
|
|
33 |
de_DE_thorsten-emotion_neutral |
|
|
34 |
de_DE_thorsten-emotion_sleepy |
|
|
35 |
de_DE_thorsten-emotion_surprised |
|
|
36 |
de_DE_thorsten-emotion_whisper |
|
|
37 |
de_DE_thorsten |
|
|
38 |
el_GR_rapunzelina |
|
|
39 |
es_ES_carlfm |
|
|
40 |
es_ES_m-ailabs_karen_savage |
|
|
41 |
es_ES_m-ailabs_tux |
|
|
42 |
es_ES_m-ailabs_victor_villarraza |
|
|
43 |
fa_haaniye |
|
|
44 |
fi_FI_harri-tapani-ylilammi |
|
|
45 |
fr_FR_m-ailabs_bernard |
|
High Arousal |
46 |
fr_FR_m-ailabs_ezwa |
|
|
47 |
fr_FR_m-ailabs_gilles_g_le_blanc |
|
|
48 |
fr_FR_m-ailabs_nadine_eckert_boulet |
|
|
49 |
fr_FR_m-ailabs_zeckou |
|
|
50 |
fr_FR_siwis |
|
|
51 |
fr_FR_tom |
|
|
52 |
gu_IN_cmu-indic_cmu_indic_guj_ad |
|
|
53 |
gu_IN_cmu-indic_cmu_indic_guj_dp |
|
|
54 |
gu_IN_cmu-indic_cmu_indic_guj_kt |
|
|
55 |
ha_NE_openbible |
|
|
56 |
hu_HU_diana-majlinger |
|
|
57 |
it_IT_mls_10446 |
|
|
58 |
it_IT_mls_1157 |
|
|
59 |
it_IT_mls_12428 |
|
|
60 |
it_IT_mls_12804 |
|
|
61 |
it_IT_mls_1595 |
|
|
62 |
it_IT_mls_1725 |
|
|
63 |
it_IT_mls_1989 |
|
|
64 |
it_IT_mls_2019 |
|
|
65 |
it_IT_mls_2033 |
|
|
66 |
it_IT_mls_277 |
|
|
67 |
it_IT_mls_4649 |
|
|
68 |
it_IT_mls_4705 |
|
|
69 |
it_IT_mls_4971 |
|
|
70 |
it_IT_mls_4974 |
|
|
71 |
it_IT_mls_4975 |
|
|
72 |
it_IT_mls_4998 |
|
|
73 |
it_IT_mls_5010 |
|
|
74 |
it_IT_mls_5421 |
|
|
75 |
it_IT_mls_6001 |
|
|
76 |
it_IT_mls_6299 |
|
|
77 |
it_IT_mls_6348 |
|
|
78 |
it_IT_mls_643 |
|
|
79 |
it_IT_mls_644 |
|
|
80 |
it_IT_mls_659 |
|
|
81 |
it_IT_mls_6744 |
|
|
82 |
it_IT_mls_6807 |
|
|
83 |
it_IT_mls_7405 |
|
|
84 |
it_IT_mls_7440 |
|
|
85 |
it_IT_mls_7444 |
|
|
86 |
it_IT_mls_7936 |
|
|
87 |
it_IT_mls_8181 |
|
|
88 |
it_IT_mls_8207 |
|
|
89 |
it_IT_mls_8384 |
|
|
90 |
it_IT_mls_844 |
|
|
91 |
it_IT_mls_8461 |
|
|
92 |
it_IT_mls_8828 |
|
|
93 |
it_IT_mls_8842 |
|
|
94 |
it_IT_mls_9185 |
|
|
95 |
it_IT_mls_9772 |
|
|
96 |
it_IT_riccardo-fasol |
|
|
97 |
jv_ID_google-gmu_00027 |
|
|
98 |
jv_ID_google-gmu_00264 |
|
|
99 |
jv_ID_google-gmu_00658 |
|
|
100 |
jv_ID_google-gmu_01392 |
|
|
101 |
jv_ID_google-gmu_01519 |
|
|
102 |
jv_ID_google-gmu_01932 |
|
|
103 |
jv_ID_google-gmu_02059 |
|
|
104 |
jv_ID_google-gmu_02326 |
|
|
105 |
jv_ID_google-gmu_02884 |
|
|
106 |
jv_ID_google-gmu_03187 |
|
|
107 |
jv_ID_google-gmu_03314 |
|
|
108 |
jv_ID_google-gmu_03424 |
|
|
109 |
jv_ID_google-gmu_03727 |
|
|
110 |
jv_ID_google-gmu_04175 |
|
|
111 |
jv_ID_google-gmu_04285 |
|
|
112 |
jv_ID_google-gmu_04588 |
|
|
113 |
jv_ID_google-gmu_04679 |
|
|
114 |
jv_ID_google-gmu_04715 |
|
|
l
115 |
jv_ID_google-gmu_04982 |
|
|
116 |
jv_ID_google-gmu_05219 |
|
|
117 |
jv_ID_google-gmu_05522 |
|
|
118 |
jv_ID_google-gmu_05540 |
|
|
119 |
jv_ID_google-gmu_05667 |
|
|
120 |
jv_ID_google-gmu_05970 |
|
|
121 |
jv_ID_google-gmu_06080 |
|
|
122 |
jv_ID_google-gmu_06207 |
|
Pleasant low dominance F |
123 |
jv_ID_google-gmu_06383 |
|
|
124 |
jv_ID_google-gmu_06510 |
|
|
125 |
jv_ID_google-gmu_06941 |
|
|
126 |
jv_ID_google-gmu_07335 |
|
|
127 |
jv_ID_google-gmu_07638 |
|
|
128 |
jv_ID_google-gmu_07765 |
|
|
129 |
jv_ID_google-gmu_07875 |
|
|
130 |
jv_ID_google-gmu_08002 |
|
|
131 |
jv_ID_google-gmu_08178 |
|
|
132 |
jv_ID_google-gmu_08305 |
|
|
133 |
jv_ID_google-gmu_08736 |
|
|
134 |
jv_ID_google-gmu_09039 |
|
|
135 |
jv_ID_google-gmu_09724 |
|
|
136 |
ko_KO_kss |
|
|
137 |
ne_NP_ne-google_0258 |
|
|
138 |
ne_NP_ne-google_0283 |
|
|
139 |
ne_NP_ne-google_0546 |
|
|
140 |
ne_NP_ne-google_0649 |
|
|
141 |
ne_NP_ne-google_0883 |
|
|
142 |
ne_NP_ne-google_2027 |
|
|
143 |
ne_NP_ne-google_2099 |
|
|
144 |
ne_NP_ne-google_2139 |
|
|
145 |
ne_NP_ne-google_3154 |
|
|
146 |
ne_NP_ne-google_3614 |
|
|
147 |
ne_NP_ne-google_3960 |
|
|
148 |
ne_NP_ne-google_3997 |
|
|
149 |
ne_NP_ne-google_5687 |
|
|
150 |
ne_NP_ne-google_6329 |
|
|
151 |
ne_NP_ne-google_6587 |
|
|
152 |
ne_NP_ne-google_6834 |
|
|
153 |
ne_NP_ne-google_7957 |
|
|
154 |
ne_NP_ne-google_9407 |
|
|
155 |
nl_bart-de-leeuw |
|
|
156 |
nl_flemishguy |
|
|
157 |
nl_nathalie |
|
|
158 |
nl_pmk |
|
|
159 |
nl_rdh |
|
|
160 |
pl_PL_m-ailabs_nina_brown |
|
|
161 |
pl_PL_m-ailabs_piotr_nater |
|
|
162 |
ru_RU_multi_hajdurova |
|
|
163 |
ru_RU_multi_minaev |
|
|
164 |
ru_RU_multi_nikolaev |
|
|
165 |
sw_lanfrica |
|
|
166 |
te_IN_cmu-indic_kpn |
|
|
167 |
te_IN_cmu-indic_sk |
|
|
168 |
te_IN_cmu-indic_ss |
|
|
169 |
tn_ZA_google-nwu_0045 |
|
|
170 |
tn_ZA_google-nwu_0378 |
|
|
171 |
tn_ZA_google-nwu_0441 |
|
|
172 |
tn_ZA_google-nwu_1483 |
|
|
173 |
tn_ZA_google-nwu_1498 |
|
|
174 |
tn_ZA_google-nwu_1932 |
|
|
175 |
tn_ZA_google-nwu_2839 |
|
|
176 |
tn_ZA_google-nwu_3342 |
|
|
177 |
tn_ZA_google-nwu_3629 |
|
|
178 |
tn_ZA_google-nwu_4506 |
|
|
179 |
tn_ZA_google-nwu_4850 |
|
|
180 |
tn_ZA_google-nwu_5628 |
|
|
181 |
tn_ZA_google-nwu_6116 |
|
|
182 |
tn_ZA_google-nwu_6206 |
|
|
183 |
tn_ZA_google-nwu_6234 |
|
|
184 |
tn_ZA_google-nwu_6459 |
|
|
185 |
tn_ZA_google-nwu_7674 |
|
|
186 |
tn_ZA_google-nwu_7693 |
|
|
187 |
tn_ZA_google-nwu_7866 |
|
|
188 |
tn_ZA_google-nwu_7896 |
|
|
189 |
tn_ZA_google-nwu_8333 |
|
|
190 |
tn_ZA_google-nwu_8512 |
|
|
191 |
tn_ZA_google-nwu_8532 |
|
|
192 |
tn_ZA_google-nwu_8914 |
|
|
193 |
tn_ZA_google-nwu_9061 |
|
|
194 |
tn_ZA_google-nwu_9365 |
|
|
195 |
vi_VN_vais1000 |
|
Native English Voices
- A voice is defined by a 2s artificial audio - generated by mimic3 TTS - then given to StyleTTS2 as speaker
# first start Flask api.py
python tts.py --text a.txt --voice " en_US_cmu_arctic_aew"
voice | TTS | |
---|---|---|
0 |
en_US_cmu_arctic_aew |
|
1 |
en_US_cmu_arctic_ahw |
|
2 |
en_US_cmu_arctic_aup |
|
3 |
en_US_cmu_arctic_awbrms |
|
4 |
en_US_cmu_arctic_axb |
|
5 |
en_US_cmu_arctic_bdl |
|
6 |
en_US_cmu_arctic_clb |
|
7 |
en_US_cmu_arctic_eey |
|
8 |
en_US_cmu_arctic_fem |
|
9 |
en_US_cmu_arctic_gka |
|
10 |
en_US_cmu_arctic_jmk |
|
11 |
en_US_cmu_arctic_ksp |
|
12 |
en_US_cmu_arctic_ljm |
|
13 |
en_US_cmu_arctic_lnh |
|
14 |
en_US_cmu_arctic_rxr |
|
15 |
en_US_cmu_arctic_slp |
|
16 |
en_US_cmu_arctic_slt |
|
17 |
en_US_hifi-tts_6097 |
|
18 |
en_US_hifi-tts_9017 |
|
19 |
en_US_hifi-tts_92 |
|
20 |
en_US_ljspeech |
|
21 |
en_US_m-ailabs_elliot_miller |
|
22 |
en_US_m-ailabs_judy_bieber |
|
23 |
en_US_m-ailabs_mary_ann |
|
24 |
en_US_vctk_p225 |
|
25 |
en_US_vctk_p226 |
|
26 |
en_US_vctk_p227 |
|
27 |
en_US_vctk_p228 |
|
28 |
en_US_vctk_p229 |
|
29 |
en_US_vctk_p230 |
|
30 |
en_US_vctk_p231 |
|
31 |
en_US_vctk_p232 |
|
32 |
en_US_vctk_p233 |
|
33 |
en_US_vctk_p234 |
|
34 |
en_US_vctk_p236 |
|
35 |
en_US_vctk_p237 |
|
36 |
en_US_vctk_p238 |
|
37 |
en_US_vctk_p239 |
|
38 |
en_US_vctk_p240 |
|
39 |
en_US_vctk_p241 |
|
40 |
en_US_vctk_p243 |
|
41 |
en_US_vctk_p244 |
|
42 |
en_US_vctk_p245 |
|
43 |
en_US_vctk_p246 |
|
44 |
en_US_vctk_p247 |
|
45 |
en_US_vctk_p248 |
|
46 |
en_US_vctk_p249 |
|
47 |
en_US_vctk_p250 |
|
48 |
en_US_vctk_p251 |
|
49 |
en_US_vctk_p252 |
|
50 |
en_US_vctk_p253 |
|
51 |
en_US_vctk_p254 |
|
52 |
en_US_vctk_p255 |
|
53 |
en_US_vctk_p256 |
|
54 |
en_US_vctk_p257 |
|
55 |
en_US_vctk_p258 |
|
56 |
en_US_vctk_p259 |
|
57 |
en_US_vctk_p260 |
|
58 |
en_US_vctk_p261 |
|
59 |
en_US_vctk_p262 |
|
60 |
en_US_vctk_p263 |
|
61 |
en_US_vctk_p264 |
|
62 |
en_US_vctk_p265 |
|
63 |
en_US_vctk_p266 |
|
64 |
en_US_vctk_p267 |
|
65 |
en_US_vctk_p268 |
|
66 |
en_US_vctk_p269 |
|
67 |
en_US_vctk_p270 |
|
68 |
en_US_vctk_p271 |
|
69 |
en_US_vctk_p272 |
|
70 |
en_US_vctk_p273 |
|
71 |
en_US_vctk_p274 |
|
72 |
en_US_vctk_p275 |
|
73 |
en_US_vctk_p276 |
|
74 |
en_US_vctk_p277 |
|
75 |
en_US_vctk_p278 |
|
76 |
en_US_vctk_p279 |
|
77 |
en_US_vctk_p280 |
|
78 |
en_US_vctk_p281 |
|
79 |
en_US_vctk_p282 |
|
80 |
en_US_vctk_p283 |
|
81 |
en_US_vctk_p284 |
|
82 |
en_US_vctk_p285 |
|
83 |
en_US_vctk_p286 |
|
84 |
en_US_vctk_p287 |
|
85 |
en_US_vctk_p288 |
|
86 |
en_US_vctk_p292 |
|
87 |
en_US_vctk_p293 |
|
88 |
en_US_vctk_p294 |
|
89 |
en_US_vctk_p295 |
|
90 |
en_US_vctk_p297 |
|
91 |
en_US_vctk_p298 |
|
92 |
en_US_vctk_p299 |
|
93 |
en_US_vctk_p300 |
|
94 |
en_US_vctk_p301 |
|
95 |
en_US_vctk_p302 |
|
96 |
en_US_vctk_p303 |
|
97 |
en_US_vctk_p304 |
|
98 |
en_US_vctk_p305 |
|
99 |
en_US_vctk_p306 |
|
100 |
en_US_vctk_p307 |
|
101 |
en_US_vctk_p308 |
|
102 |
en_US_vctk_p310 |
|
103 |
en_US_vctk_p311 |
|
104 |
en_US_vctk_p312 |
|
105 |
en_US_vctk_p313 |
|
106 |
en_US_vctk_p314 |
|
107 |
en_US_vctk_p316 |
|
108 |
en_US_vctk_p317 |
|
109 |
en_US_vctk_p318 |
|
110 |
en_US_vctk_p323 |
|
111 |
en_US_vctk_p326 |
|
112 |
en_US_vctk_p329 |
|
113 |
en_US_vctk_p336 |
|
114 |
en_US_vctk_p340 |
|
115 |
en_US_vctk_p341 |
|
116 |
en_US_vctk_p343 |
|
117 |
en_US_vctk_p345 |
|
118 |
en_US_vctk_p347 |
|
119 |
en_US_vctk_p351 |
|
120 |
en_US_vctk_p360 |
|
121 |
en_US_vctk_p361 |
|
122 |
en_US_vctk_p362 |
|
123 |
en_US_vctk_p363 |
|
124 |
en_US_vctk_p364 |
|
125 |
en_US_vctk_p374 |
|
126 |
en_US_vctk_p376 |
|
127 |
en_US_vctk_s5 |
|