rubert-tiny2-srl / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
9e20c7e
|
raw
history blame
5.53 kB
metadata
license: mit
tags:
  - generated_from_trainer
base_model: cointegrated/rubert-tiny2
model-index:
  - name: rubert-tiny2-srl
    results: []

rubert-tiny2-srl

This model is a fine-tuned version of cointegrated/rubert-tiny2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2041
  • Addressee Precision: 0.7273
  • Addressee Recall: 0.8
  • Addressee F1: 0.7619
  • Addressee Number: 10
  • Benefactive Precision: 0.0
  • Benefactive Recall: 0.0
  • Benefactive F1: 0.0
  • Benefactive Number: 1
  • Causator Precision: 0.8824
  • Causator Recall: 0.8333
  • Causator F1: 0.8571
  • Causator Number: 18
  • Cause Precision: 0.6667
  • Cause Recall: 0.1538
  • Cause F1: 0.25
  • Cause Number: 13
  • Contrsubject Precision: 0.6667
  • Contrsubject Recall: 0.3333
  • Contrsubject F1: 0.4444
  • Contrsubject Number: 6
  • Deliberative Precision: 1.0
  • Deliberative Recall: 0.4
  • Deliberative F1: 0.5714
  • Deliberative Number: 5
  • Experiencer Precision: 0.7660
  • Experiencer Recall: 0.8
  • Experiencer F1: 0.7826
  • Experiencer Number: 90
  • Object Precision: 0.7576
  • Object Recall: 0.6868
  • Object F1: 0.7205
  • Object Number: 182
  • Predicate Precision: 0.9713
  • Predicate Recall: 0.9967
  • Predicate F1: 0.9839
  • Predicate Number: 306
  • Overall Precision: 0.8719
  • Overall Recall: 0.8415
  • Overall F1: 0.8565
  • Overall Accuracy: 0.9429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00018632464179881193
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 755657
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.02
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Addressee Precision Addressee Recall Addressee F1 Addressee Number Benefactive Precision Benefactive Recall Benefactive F1 Benefactive Number Causator Precision Causator Recall Causator F1 Causator Number Cause Precision Cause Recall Cause F1 Cause Number Contrsubject Precision Contrsubject Recall Contrsubject F1 Contrsubject Number Deliberative Precision Deliberative Recall Deliberative F1 Deliberative Number Experiencer Precision Experiencer Recall Experiencer F1 Experiencer Number Object Precision Object Recall Object F1 Object Number Predicate Precision Predicate Recall Predicate F1 Predicate Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.2845 1.0 181 0.2356 0.8 0.8 0.8000 10 0.0 0.0 0.0 1 0.7895 0.8333 0.8108 18 0.0 0.0 0.0 13 0.0 0.0 0.0 6 0.0 0.0 0.0 5 0.7320 0.7889 0.7594 90 0.7740 0.6209 0.6890 182 0.9744 0.9935 0.9838 306 0.875 0.8098 0.8412 0.9376
0.1875 1.99 362 0.2041 0.7273 0.8 0.7619 10 0.0 0.0 0.0 1 0.8824 0.8333 0.8571 18 0.6667 0.1538 0.25 13 0.6667 0.3333 0.4444 6 1.0 0.4 0.5714 5 0.7660 0.8 0.7826 90 0.7576 0.6868 0.7205 182 0.9713 0.9967 0.9839 306 0.8719 0.8415 0.8565 0.9429

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu117
  • Datasets 2.11.0
  • Tokenizers 0.13.3