|
--- |
|
language: it |
|
license: apache-2.0 |
|
widget: |
|
- text: "Il [MASK] ha chiesto revocarsi l'obbligo di pagamento" |
|
--- |
|
|
|
<img src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/ITALIAN_LEGAL_BERT.jpg" width="600"/> |
|
<h1> ITALIAN-LEGAL-BERT:A pre-trained Transformer Language Model for Italian Law </h1> |
|
|
|
ITALIAN-LEGAL-BERT is based on <a href="https://huggingface.co/dbmdz/bert-base-italian-xxl-cased">bert-base-italian-xxl-cased</a> with additional pre-training of the Italian BERT model on Italian civil law corpora. |
|
It achieves better results than the ‘general-purpose’ Italian BERT in different domain-specific tasks. |
|
|
|
|
|
|
|
<b>ITALIAN-LEGAL-BERT variant</b> |
|
* <a href="https://huggingface.co/dlicari/Italian-Legal-BERT-SC">FROM SCRATCH</a>, It is the ITALIAN-LEGAL-BERT variant pre-trained from scratch on Italian legal documents (<a href="https://huggingface.co/dlicari/Italian-Legal-BERT-SC">ITA-LEGAL-BERT-SC</a>) based on the CamemBERT architecture |
|
* <a href="https://huggingface.co/dlicari/distil-ita-legal-bert">DISTILLED</a>, a distilled version of ITALIAN-LEGAL-BERT ( <a href="https://huggingface.co/dlicari/distil-ita-legal-bert">DISTIL-ITA-LEGAL-BERT</a>) |
|
|
|
|
|
<h2>Training procedure</h2> |
|
We initialized ITALIAN-LEGAL-BERT with ITALIAN XXL BERT |
|
and pretrained for an additional 4 epochs on 3.7 GB of preprocessed text from the National Jurisprudential |
|
Archive using the Huggingface PyTorch-Transformers library. We used BERT architecture |
|
with a language modeling head on top, AdamW Optimizer, initial learning rate 5e-5 (with |
|
linear learning rate decay, ends at 2.525e-9), sequence length 512, batch size 10 (imposed |
|
by GPU capacity), 8.4 million training steps, device 1*GPU V100 16GB |
|
<p /> |
|
<h2> Usage </h2> |
|
|
|
ITALIAN-LEGAL-BERT model can be loaded like: |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
model_name = "dlicari/Italian-Legal-BERT" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModel.from_pretrained(model_name) |
|
``` |
|
|
|
You can use the Transformers library fill-mask pipeline to do inference with ITALIAN-LEGAL-BERT. |
|
```python |
|
from transformers import pipeline |
|
model_name = "dlicari/Italian-Legal-BERT" |
|
fill_mask = pipeline("fill-mask", model_name) |
|
fill_mask("Il [MASK] ha chiesto revocarsi l'obbligo di pagamento") |
|
#[{'sequence': "Il ricorrente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.7264330387115479}, |
|
# {'sequence': "Il convenuto ha chiesto revocarsi l'obbligo di pagamento",'score': 0.09641049802303314}, |
|
# {'sequence': "Il resistente ha chiesto revocarsi l'obbligo di pagamento",'score': 0.039877112954854965}, |
|
# {'sequence': "Il lavoratore ha chiesto revocarsi l'obbligo di pagamento",'score': 0.028993653133511543}, |
|
# {'sequence': "Il Ministero ha chiesto revocarsi l'obbligo di pagamento", 'score': 0.025297977030277252}] |
|
``` |
|
|
|
In this [COLAB: ITALIAN-LEGAL-BERT: Minimal Start for Italian Legal Downstream Tasks](https://colab.research.google.com/drive/1ZOWaWnLaagT_PX6MmXMP2m3MAOVXkyRK?usp=sharing) |
|
how to use it for sentence similarity, sentence classification, and named entity recognition |
|
- https://colab.research.google.com/drive/1ZOWaWnLaagT_PX6MmXMP2m3MAOVXkyRK?usp=sharing |
|
|
|
<img src="https://huggingface.co/dlicari/Italian-Legal-BERT/resolve/main/semantic_text_similarity.jpg" width="700"/> |
|
|
|
|
|
|
|
<h2> Citation </h2> |
|
If you find our resource or paper is useful, please consider including the following citation in your paper. |
|
|
|
``` |
|
@inproceedings{licari_italian-legal-bert_2022, |
|
address = {Bozen-Bolzano, Italy}, |
|
series = {{CEUR} {Workshop} {Proceedings}}, |
|
title = {{ITALIAN}-{LEGAL}-{BERT}: {A} {Pre}-trained {Transformer} {Language} {Model} for {Italian} {Law}}, |
|
volume = {3256}, |
|
shorttitle = {{ITALIAN}-{LEGAL}-{BERT}}, |
|
url = {https://ceur-ws.org/Vol-3256/#km4law3}, |
|
language = {en}, |
|
urldate = {2022-11-19}, |
|
booktitle = {Companion {Proceedings} of the 23rd {International} {Conference} on {Knowledge} {Engineering} and {Knowledge} {Management}}, |
|
publisher = {CEUR}, |
|
author = {Licari, Daniele and Comandè, Giovanni}, |
|
editor = {Symeonidou, Danai and Yu, Ran and Ceolin, Davide and Poveda-Villalón, María and Audrito, Davide and Caro, Luigi Di and Grasso, Francesca and Nai, Roberto and Sulis, Emilio and Ekaputra, Fajar J. and Kutz, Oliver and Troquard, Nicolas}, |
|
month = sep, |
|
year = {2022}, |
|
note = {ISSN: 1613-0073}, |
|
file = {Full Text PDF:https://ceur-ws.org/Vol-3256/km4law3.pdf}, |
|
} |
|
|
|
``` |