xlm-roberta-large-TASTESet-ner

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4970
  • Precision: 0.8662
  • Recall: 0.8989
  • F1: 0.8822
  • Accuracy: 0.8889

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 31 1.8592 0.3077 0.4305 0.3589 0.4376
No log 2.0 62 1.3188 0.4793 0.5445 0.5098 0.5884
No log 3.0 93 1.1581 0.5382 0.6134 0.5733 0.6391
No log 4.0 124 1.1373 0.6480 0.5964 0.6211 0.6522
No log 5.0 155 0.8784 0.6969 0.7370 0.7164 0.7425
No log 6.0 186 0.7242 0.7472 0.7823 0.7643 0.7930
No log 7.0 217 0.6340 0.7869 0.8258 0.8058 0.8225
No log 8.0 248 0.5766 0.7832 0.8562 0.8180 0.8391
No log 9.0 279 0.5200 0.8087 0.8702 0.8383 0.8583
No log 10.0 310 0.4981 0.8495 0.8722 0.8607 0.8642
No log 11.0 341 0.4732 0.8510 0.8836 0.8670 0.8762
No log 12.0 372 0.4884 0.8593 0.8801 0.8696 0.8746
No log 13.0 403 0.4701 0.8444 0.8893 0.8663 0.8825
No log 14.0 434 0.4759 0.8576 0.8898 0.8734 0.8814
No log 15.0 465 0.4765 0.8596 0.8945 0.8767 0.8840
No log 16.0 496 0.4817 0.8610 0.8984 0.8793 0.8881
0.7221 17.0 527 0.4904 0.8572 0.8989 0.8775 0.8869
0.7221 18.0 558 0.4971 0.8640 0.8969 0.8802 0.8869
0.7221 19.0 589 0.4954 0.8595 0.9024 0.8804 0.8894
0.7221 20.0 620 0.4970 0.8662 0.8989 0.8822 0.8889

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.9.0
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.