dmitvuk's picture
End of training
a8cb84a
|
raw
history blame
1.89 kB
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: SEMEVAL23_TASK3_SUBTASK1_MULTI
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# SEMEVAL23_TASK3_SUBTASK1_MULTI
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7001
- F1: 0.6657
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.834 | 1.0 | 160 | 1.0521 | 0.3659 |
| 0.1947 | 2.0 | 320 | 0.8869 | 0.5581 |
| 1.2275 | 3.0 | 480 | 0.8091 | 0.6190 |
| 0.0098 | 4.0 | 640 | 0.6704 | 0.6538 |
| 2.6387 | 5.0 | 800 | 0.7001 | 0.6657 |
| 0.0077 | 6.0 | 960 | 1.2344 | 0.6278 |
| 0.0104 | 7.0 | 1120 | 1.3100 | 0.6379 |
| 0.0007 | 8.0 | 1280 | 1.6961 | 0.5974 |
| 0.0019 | 9.0 | 1440 | 1.4126 | 0.6530 |
| 0.0191 | 10.0 | 1600 | 1.4652 | 0.6444 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.0
- Tokenizers 0.13.3