|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- uoft-cs/cifar10 |
|
- openslr/librispeech_asr |
|
- udayl/UCI_HAR |
|
language: |
|
- en |
|
metrics: |
|
- bertscore |
|
- accuracy |
|
library_name: adapter-transformers |
|
tags: |
|
- code |
|
- medical |
|
--- |
|
# UANN Model |
|
|
|
## Model Description |
|
|
|
This is the Universal Adaptive Neural Network (UANN) designed for multi-modal AI agents. The model incorporates a Mixture of Experts (MoE) architecture. |
|
|
|
## Usage |
|
|
|
```python |
|
import torch |
|
from models.moe_model import MoEModel |
|
|
|
# Initialize model |
|
model = MoEModel(input_dim=512, num_experts=3) |
|
|
|
# Dummy inputs for testing |
|
vision_input = torch.randn(1, 3, 32, 32) |
|
audio_input = torch.randn(1, 100, 40) |
|
sensor_input = torch.randn(1, 10) |
|
|
|
# Forward pass |
|
output = model(vision_input, audio_input, sensor_input) |
|
print(output) |