dnouri's picture
Commit of spleen_ct_segmentation_v0.1.0 from Project-MONAI/model-zoo/hosting_storage_v1
f5f8b95
|
raw
history blame
2.36 kB
metadata
tags:
  - MONAI

Description

A pre-trained model for volumetric (3D) segmentation of the spleen from CT image.

Model Overview

This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.

Data

The training dataset is Task09_Spleen.tar from http://medicaldecathlon.com/.

Training configuration

The training was performed with at least 12GB-memory GPUs.

Actual Model Input: 96 x 96 x 96

Input and output formats

Input: 1 channel CT image

Output: 2 channels: Label 1: spleen; Label 0: everything else

Scores

This model achieves the following Dice score on the validation data (our own split from the training dataset):

Mean Dice = 0.96

commands example

Execute training:

python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf

Override the train config to execute multi-GPU training:

torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf

Override the train config to execute evaluation with the trained model:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf

Execute inference:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf

Disclaimer

This is an example, not to be used for diagnostic purposes.

References

[1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.

[2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40