You are viewing v0.32.0 version.
A newer version
v0.32.2 is available.
MochiTransformer3DModel
A Diffusion Transformer model for 3D video-like data was introduced in Mochi-1 Preview by Genmo.
The model can be loaded with the following code snippet.
from diffusers import MochiTransformer3DModel
vae = MochiTransformer3DModel.from_pretrained("genmo/mochi-1-preview", subfolder="transformer", torch_dtype=torch.float16).to("cuda")
MochiTransformer3DModel
class diffusers.MochiTransformer3DModel
< source >( patch_size: int = 2 num_attention_heads: int = 24 attention_head_dim: int = 128 num_layers: int = 48 pooled_projection_dim: int = 1536 in_channels: int = 12 out_channels: typing.Optional[int] = None qk_norm: str = 'rms_norm' text_embed_dim: int = 4096 time_embed_dim: int = 256 activation_fn: str = 'swiglu' max_sequence_length: int = 256 )
Parameters
- patch_size (
int
, defaults to2
) — The size of the patches to use in the patch embedding layer. - num_attention_heads (
int
, defaults to24
) — The number of heads to use for multi-head attention. - attention_head_dim (
int
, defaults to128
) — The number of channels in each head. - num_layers (
int
, defaults to48
) — The number of layers of Transformer blocks to use. - in_channels (
int
, defaults to12
) — The number of channels in the input. - out_channels (
int
, optional, defaults toNone
) — The number of channels in the output. - qk_norm (
str
, defaults to"rms_norm"
) — The normalization layer to use. - text_embed_dim (
int
, defaults to4096
) — Input dimension of text embeddings from the text encoder. - time_embed_dim (
int
, defaults to256
) — Output dimension of timestep embeddings. - activation_fn (
str
, defaults to"swiglu"
) — Activation function to use in feed-forward. - max_sequence_length (
int
, defaults to256
) — The maximum sequence length of text embeddings supported.
A Transformer model for video-like data introduced in Mochi.
Transformer2DModelOutput
class diffusers.models.modeling_outputs.Transformer2DModelOutput
< source >( sample: torch.Tensor )
Parameters
- sample (
torch.Tensor
of shape(batch_size, num_channels, height, width)
or(batch size, num_vector_embeds - 1, num_latent_pixels)
if Transformer2DModel is discrete) — The hidden states output conditioned on theencoder_hidden_states
input. If discrete, returns probability distributions for the unnoised latent pixels.
The output of Transformer2DModel.