Diffusers documentation

Video Processor

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Video Processor

The VideoProcessor provides a unified API for video pipelines to prepare inputs for VAE encoding and post-processing outputs once they’re decoded. The class inherits VaeImageProcessor so it includes transformations such as resizing, normalization, and conversion between PIL Image, PyTorch, and NumPy arrays.

VideoProcessor

diffusers.video_processor.VideoProcessor.preprocess_video

< >

( video height: typing.Optional[int] = None width: typing.Optional[int] = None )

Parameters

  • video (List[PIL.Image], List[List[PIL.Image]], torch.Tensor, np.array, List[torch.Tensor], List[np.array]) — The input video. It can be one of the following:
    • List of the PIL images.
    • List of list of PIL images.
    • 4D Torch tensors (expected shape for each tensor (num_frames, num_channels, height, width)).
    • 4D NumPy arrays (expected shape for each array (num_frames, height, width, num_channels)).
    • List of 4D Torch tensors (expected shape for each tensor (num_frames, num_channels, height, width)).
    • List of 4D NumPy arrays (expected shape for each array (num_frames, height, width, num_channels)).
    • 5D NumPy arrays: expected shape for each array (batch_size, num_frames, height, width, num_channels).
    • 5D Torch tensors: expected shape for each array (batch_size, num_frames, num_channels, height, width).
  • height (int, optional, defaults to None) — The height in preprocessed frames of the video. If None, will use the get_default_height_width() to get default height.
  • width (int, optional, defaults to None) -- The width in preprocessed frames of the video. If None, will use get_default_height_width() to get the default width.

Preprocesses input video(s).

diffusers.video_processor.VideoProcessor.postprocess_video

< >

( video: Tensor output_type: str = 'np' )

Parameters

  • video (torch.Tensor) — The video as a tensor.
  • output_type (str, defaults to "np") — Output type of the postprocessed video tensor.

Converts a video tensor to a list of frames for export.

< > Update on GitHub