Inference types
This page lists the types (e.g. dataclasses) available for each task supported on the Hugging Face Hub. Each task is specified using a JSON schema, and the types are generated from these schemas - with some customization due to Python requirements. Visit @huggingface.js/tasks to find the JSON schemas for each task.
This part of the lib is still under development and will be improved in future releases.
audio_classification
class huggingface_hub.AudioClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.audio_classification.AudioClassificationParameters] = None )
Inputs for Audio Classification inference
Outputs for Audio Classification inference
class huggingface_hub.AudioClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('AudioClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Audio Classification
audio_to_audio
Inputs for Audio to Audio inference
class huggingface_hub.AudioToAudioOutputElement
< source >( blob: typing.Any content_type: str label: str )
Outputs of inference for the Audio To Audio task A generated audio file with its label.
automatic_speech_recognition
class huggingface_hub.AutomaticSpeechRecognitionGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('AutomaticSpeechRecognitionEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process Ad-hoc parametrization of the text generation process
class huggingface_hub.AutomaticSpeechRecognitionInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionParameters] = None )
Inputs for Automatic Speech Recognition inference
class huggingface_hub.AutomaticSpeechRecognitionOutput
< source >( text: str chunks: typing.Optional[typing.List[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionOutputChunk]] = None )
Outputs of inference for the Automatic Speech Recognition task
class huggingface_hub.AutomaticSpeechRecognitionOutputChunk
< source >( text: str timestamps: typing.List[float] )
class huggingface_hub.AutomaticSpeechRecognitionParameters
< source >( generate: typing.Optional[huggingface_hub.inference._generated.types.automatic_speech_recognition.AutomaticSpeechRecognitionGenerationParameters] = None return_timestamps: typing.Optional[bool] = None )
Additional inference parameters Additional inference parameters for Automatic Speech Recognition
chat_completion
class huggingface_hub.ChatCompletionInput
< source >( messages: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputMessage] frequency_penalty: typing.Optional[float] = None logit_bias: typing.Optional[typing.List[float]] = None logprobs: typing.Optional[bool] = None max_tokens: typing.Optional[int] = None model: typing.Optional[str] = None n: typing.Optional[int] = None presence_penalty: typing.Optional[float] = None response_format: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputGrammarType] = None seed: typing.Optional[int] = None stop: typing.Optional[typing.List[str]] = None stream: typing.Optional[bool] = None stream_options: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputStreamOptions] = None temperature: typing.Optional[float] = None tool_choice: typing.Union[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputToolType, str, NoneType] = None tool_prompt: typing.Optional[str] = None tools: typing.Optional[typing.List[huggingface_hub.inference._generated.types.chat_completion.ToolElement]] = None top_logprobs: typing.Optional[int] = None top_p: typing.Optional[float] = None )
Chat Completion Input. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionInputFunctionDefinition
< source >( arguments: typing.Any name: str description: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionInputGrammarType
< source >( type: ChatCompletionInputGrammarTypeType value: typing.Any )
class huggingface_hub.ChatCompletionInputMessage
< source >( content: typing.Union[typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputMessageChunk], str] role: str name: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionInputMessageChunk
< source >( type: ChatCompletionInputMessageChunkType image_url: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputURL] = None text: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionInputToolType
< source >( function: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputFunctionName] = None )
class huggingface_hub.ChatCompletionOutput
< source >( choices: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputComplete] created: int id: str model: str system_fingerprint: str usage: ChatCompletionOutputUsage )
Chat Completion Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionOutputComplete
< source >( finish_reason: str index: int message: ChatCompletionOutputMessage logprobs: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputLogprobs] = None )
class huggingface_hub.ChatCompletionOutputFunctionDefinition
< source >( arguments: typing.Any name: str description: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionOutputLogprob
< source >( logprob: float token: str top_logprobs: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputTopLogprob] )
class huggingface_hub.ChatCompletionOutputLogprobs
< source >( content: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputLogprob] )
class huggingface_hub.ChatCompletionOutputMessage
< source >( role: str content: typing.Optional[str] = None tool_calls: typing.Optional[typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputToolCall]] = None )
class huggingface_hub.ChatCompletionOutputToolCall
< source >( function: ChatCompletionOutputFunctionDefinition id: str type: str )
class huggingface_hub.ChatCompletionOutputUsage
< source >( completion_tokens: int prompt_tokens: int total_tokens: int )
class huggingface_hub.ChatCompletionStreamOutput
< source >( choices: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputChoice] created: int id: str model: str system_fingerprint: str usage: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputUsage] = None )
Chat Completion Stream Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.ChatCompletionStreamOutputChoice
< source >( delta: ChatCompletionStreamOutputDelta index: int finish_reason: typing.Optional[str] = None logprobs: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputLogprobs] = None )
class huggingface_hub.ChatCompletionStreamOutputDelta
< source >( role: str content: typing.Optional[str] = None tool_calls: typing.Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputDeltaToolCall] = None )
class huggingface_hub.ChatCompletionStreamOutputDeltaToolCall
< source >( function: ChatCompletionStreamOutputFunction id: str index: int type: str )
class huggingface_hub.ChatCompletionStreamOutputFunction
< source >( arguments: str name: typing.Optional[str] = None )
class huggingface_hub.ChatCompletionStreamOutputLogprob
< source >( logprob: float token: str top_logprobs: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputTopLogprob] )
class huggingface_hub.ChatCompletionStreamOutputLogprobs
< source >( content: typing.List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputLogprob] )
class huggingface_hub.ChatCompletionStreamOutputUsage
< source >( completion_tokens: int prompt_tokens: int total_tokens: int )
class huggingface_hub.ToolElement
< source >( function: ChatCompletionInputFunctionDefinition type: str )
depth_estimation
class huggingface_hub.DepthEstimationInput
< source >( inputs: typing.Any parameters: typing.Optional[typing.Dict[str, typing.Any]] = None )
Inputs for Depth Estimation inference
class huggingface_hub.DepthEstimationOutput
< source >( depth: typing.Any predicted_depth: typing.Any )
Outputs of inference for the Depth Estimation task
document_question_answering
class huggingface_hub.DocumentQuestionAnsweringInput
< source >( inputs: DocumentQuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.document_question_answering.DocumentQuestionAnsweringParameters] = None )
Inputs for Document Question Answering inference
class huggingface_hub.DocumentQuestionAnsweringInputData
< source >( image: typing.Any question: str )
One (document, question) pair to answer
class huggingface_hub.DocumentQuestionAnsweringOutputElement
< source >( answer: str end: int score: float start: int words: typing.List[int] )
Outputs of inference for the Document Question Answering task
class huggingface_hub.DocumentQuestionAnsweringParameters
< source >( doc_stride: typing.Optional[int] = None handle_impossible_answer: typing.Optional[bool] = None lang: typing.Optional[str] = None max_answer_len: typing.Optional[int] = None max_question_len: typing.Optional[int] = None max_seq_len: typing.Optional[int] = None top_k: typing.Optional[int] = None word_boxes: typing.Optional[typing.List[typing.Union[typing.List[float], str]]] = None )
Additional inference parameters Additional inference parameters for Document Question Answering
feature_extraction
class huggingface_hub.FeatureExtractionInput
< source >( inputs: str normalize: typing.Optional[bool] = None prompt_name: typing.Optional[str] = None truncate: typing.Optional[bool] = None truncation_direction: typing.Optional[ForwardRef('FeatureExtractionInputTruncationDirection')] = None )
Feature Extraction Input. Auto-generated from TEI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tei-import.ts.
fill_mask
class huggingface_hub.FillMaskInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.fill_mask.FillMaskParameters] = None )
Inputs for Fill Mask inference
class huggingface_hub.FillMaskOutputElement
< source >( score: float sequence: str token: int token_str: typing.Any fill_mask_output_token_str: typing.Optional[str] = None )
Outputs of inference for the Fill Mask task
class huggingface_hub.FillMaskParameters
< source >( targets: typing.Optional[typing.List[str]] = None top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Fill Mask
image_classification
class huggingface_hub.ImageClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_classification.ImageClassificationParameters] = None )
Inputs for Image Classification inference
Outputs of inference for the Image Classification task
class huggingface_hub.ImageClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('ImageClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Image Classification
image_segmentation
class huggingface_hub.ImageSegmentationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_segmentation.ImageSegmentationParameters] = None )
Inputs for Image Segmentation inference
class huggingface_hub.ImageSegmentationOutputElement
< source >( label: str mask: str score: typing.Optional[float] = None )
Outputs of inference for the Image Segmentation task A predicted mask / segment
class huggingface_hub.ImageSegmentationParameters
< source >( mask_threshold: typing.Optional[float] = None overlap_mask_area_threshold: typing.Optional[float] = None subtask: typing.Optional[ForwardRef('ImageSegmentationSubtask')] = None threshold: typing.Optional[float] = None )
Additional inference parameters Additional inference parameters for Image Segmentation
image_to_image
class huggingface_hub.ImageToImageInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_image.ImageToImageParameters] = None )
Inputs for Image To Image inference
Outputs of inference for the Image To Image task
class huggingface_hub.ImageToImageParameters
< source >( guidance_scale: typing.Optional[float] = None negative_prompt: typing.Optional[typing.List[str]] = None num_inference_steps: typing.Optional[int] = None target_size: typing.Optional[huggingface_hub.inference._generated.types.image_to_image.ImageToImageTargetSize] = None )
Additional inference parameters Additional inference parameters for Image To Image
The size in pixel of the output image.
image_to_text
class huggingface_hub.ImageToTextGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('ImageToTextEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process Ad-hoc parametrization of the text generation process
class huggingface_hub.ImageToTextInput
< source >( inputs: typing.Any parameters: typing.Optional[huggingface_hub.inference._generated.types.image_to_text.ImageToTextParameters] = None )
Inputs for Image To Text inference
class huggingface_hub.ImageToTextOutput
< source >( generated_text: typing.Any image_to_text_output_generated_text: typing.Optional[str] = None )
Outputs of inference for the Image To Text task
class huggingface_hub.ImageToTextParameters
< source >( generate: typing.Optional[huggingface_hub.inference._generated.types.image_to_text.ImageToTextGenerationParameters] = None max_new_tokens: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Image To Text
object_detection
class huggingface_hub.ObjectDetectionBoundingBox
< source >( xmax: int xmin: int ymax: int ymin: int )
The predicted bounding box. Coordinates are relative to the top left corner of the input image.
class huggingface_hub.ObjectDetectionInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.object_detection.ObjectDetectionParameters] = None )
Inputs for Object Detection inference
class huggingface_hub.ObjectDetectionOutputElement
< source >( box: ObjectDetectionBoundingBox label: str score: float )
Outputs of inference for the Object Detection task
class huggingface_hub.ObjectDetectionParameters
< source >( threshold: typing.Optional[float] = None )
Additional inference parameters Additional inference parameters for Object Detection
question_answering
class huggingface_hub.QuestionAnsweringInput
< source >( inputs: QuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.question_answering.QuestionAnsweringParameters] = None )
Inputs for Question Answering inference
One (context, question) pair to answer
class huggingface_hub.QuestionAnsweringOutputElement
< source >( answer: str end: int score: float start: int )
Outputs of inference for the Question Answering task
class huggingface_hub.QuestionAnsweringParameters
< source >( align_to_words: typing.Optional[bool] = None doc_stride: typing.Optional[int] = None handle_impossible_answer: typing.Optional[bool] = None max_answer_len: typing.Optional[int] = None max_question_len: typing.Optional[int] = None max_seq_len: typing.Optional[int] = None top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Question Answering
sentence_similarity
class huggingface_hub.SentenceSimilarityInput
< source >( inputs: SentenceSimilarityInputData parameters: typing.Optional[typing.Dict[str, typing.Any]] = None )
Inputs for Sentence similarity inference
class huggingface_hub.SentenceSimilarityInputData
< source >( sentences: typing.List[str] source_sentence: str )
summarization
class huggingface_hub.SummarizationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.summarization.SummarizationParameters] = None )
Inputs for Summarization inference
Outputs of inference for the Summarization task
class huggingface_hub.SummarizationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[typing.Dict[str, typing.Any]] = None truncation: typing.Optional[ForwardRef('SummarizationTruncationStrategy')] = None )
Additional inference parameters. Additional inference parameters for summarization.
table_question_answering
class huggingface_hub.TableQuestionAnsweringInput
< source >( inputs: TableQuestionAnsweringInputData parameters: typing.Optional[typing.Dict[str, typing.Any]] = None )
Inputs for Table Question Answering inference
class huggingface_hub.TableQuestionAnsweringInputData
< source >( question: str table: typing.Dict[str, typing.List[str]] )
One (table, question) pair to answer
class huggingface_hub.TableQuestionAnsweringOutputElement
< source >( answer: str cells: typing.List[str] coordinates: typing.List[typing.List[int]] aggregator: typing.Optional[str] = None )
Outputs of inference for the Table Question Answering task
text2text_generation
class huggingface_hub.Text2TextGenerationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text2text_generation.Text2TextGenerationParameters] = None )
Inputs for Text2text Generation inference
class huggingface_hub.Text2TextGenerationOutput
< source >( generated_text: typing.Any text2_text_generation_output_generated_text: typing.Optional[str] = None )
Outputs of inference for the Text2text Generation task
class huggingface_hub.Text2TextGenerationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[typing.Dict[str, typing.Any]] = None truncation: typing.Optional[ForwardRef('Text2TextGenerationTruncationStrategy')] = None )
Additional inference parameters Additional inference parameters for Text2text Generation
text_classification
class huggingface_hub.TextClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_classification.TextClassificationParameters] = None )
Inputs for Text Classification inference
Outputs of inference for the Text Classification task
class huggingface_hub.TextClassificationParameters
< source >( function_to_apply: typing.Optional[ForwardRef('TextClassificationOutputTransform')] = None top_k: typing.Optional[int] = None )
Additional inference parameters for Text Classification.
text_generation
class huggingface_hub.TextGenerationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationInputGenerateParameters] = None stream: typing.Optional[bool] = None )
Text Generation Input. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationInputGenerateParameters
< source >( adapter_id: typing.Optional[str] = None best_of: typing.Optional[int] = None decoder_input_details: typing.Optional[bool] = None details: typing.Optional[bool] = None do_sample: typing.Optional[bool] = None frequency_penalty: typing.Optional[float] = None grammar: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationInputGrammarType] = None max_new_tokens: typing.Optional[int] = None repetition_penalty: typing.Optional[float] = None return_full_text: typing.Optional[bool] = None seed: typing.Optional[int] = None stop: typing.Optional[typing.List[str]] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_n_tokens: typing.Optional[int] = None top_p: typing.Optional[float] = None truncate: typing.Optional[int] = None typical_p: typing.Optional[float] = None watermark: typing.Optional[bool] = None )
class huggingface_hub.TextGenerationInputGrammarType
< source >( type: TypeEnum value: typing.Any )
class huggingface_hub.TextGenerationOutput
< source >( generated_text: str details: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputDetails] = None )
Text Generation Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationOutputBestOfSequence
< source >( finish_reason: TextGenerationOutputFinishReason generated_text: str generated_tokens: int prefill: typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputPrefillToken] tokens: typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken] seed: typing.Optional[int] = None top_tokens: typing.Optional[typing.List[typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken]]] = None )
class huggingface_hub.TextGenerationOutputDetails
< source >( finish_reason: TextGenerationOutputFinishReason generated_tokens: int prefill: typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputPrefillToken] tokens: typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken] best_of_sequences: typing.Optional[typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputBestOfSequence]] = None seed: typing.Optional[int] = None top_tokens: typing.Optional[typing.List[typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationOutputToken]]] = None )
class huggingface_hub.TextGenerationOutputPrefillToken
< source >( id: int logprob: float text: str )
class huggingface_hub.TextGenerationOutputToken
< source >( id: int logprob: float special: bool text: str )
class huggingface_hub.TextGenerationStreamOutput
< source >( index: int token: TextGenerationStreamOutputToken details: typing.Optional[huggingface_hub.inference._generated.types.text_generation.TextGenerationStreamOutputStreamDetails] = None generated_text: typing.Optional[str] = None top_tokens: typing.Optional[typing.List[huggingface_hub.inference._generated.types.text_generation.TextGenerationStreamOutputToken]] = None )
Text Generation Stream Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts.
class huggingface_hub.TextGenerationStreamOutputStreamDetails
< source >( finish_reason: TextGenerationOutputFinishReason generated_tokens: int input_length: int seed: typing.Optional[int] = None )
class huggingface_hub.TextGenerationStreamOutputToken
< source >( id: int logprob: float special: bool text: str )
text_to_audio
class huggingface_hub.TextToAudioGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('TextToAudioEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process Ad-hoc parametrization of the text generation process
class huggingface_hub.TextToAudioInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_audio.TextToAudioParameters] = None )
Inputs for Text To Audio inference
class huggingface_hub.TextToAudioOutput
< source >( audio: typing.Any sampling_rate: typing.Any text_to_audio_output_sampling_rate: typing.Optional[float] = None )
Outputs of inference for the Text To Audio task
class huggingface_hub.TextToAudioParameters
< source >( generate: typing.Optional[huggingface_hub.inference._generated.types.text_to_audio.TextToAudioGenerationParameters] = None )
Additional inference parameters Additional inference parameters for Text To Audio
text_to_image
class huggingface_hub.TextToImageInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_image.TextToImageParameters] = None )
Inputs for Text To Image inference
Outputs of inference for the Text To Image task
class huggingface_hub.TextToImageParameters
< source >( guidance_scale: typing.Optional[float] = None negative_prompt: typing.Optional[typing.List[str]] = None num_inference_steps: typing.Optional[int] = None scheduler: typing.Optional[str] = None seed: typing.Optional[int] = None target_size: typing.Optional[huggingface_hub.inference._generated.types.text_to_image.TextToImageTargetSize] = None )
Additional inference parameters Additional inference parameters for Text To Image
The size in pixel of the output image
text_to_speech
class huggingface_hub.TextToSpeechGenerationParameters
< source >( do_sample: typing.Optional[bool] = None early_stopping: typing.Union[bool, ForwardRef('TextToSpeechEarlyStoppingEnum'), NoneType] = None epsilon_cutoff: typing.Optional[float] = None eta_cutoff: typing.Optional[float] = None max_length: typing.Optional[int] = None max_new_tokens: typing.Optional[int] = None min_length: typing.Optional[int] = None min_new_tokens: typing.Optional[int] = None num_beam_groups: typing.Optional[int] = None num_beams: typing.Optional[int] = None penalty_alpha: typing.Optional[float] = None temperature: typing.Optional[float] = None top_k: typing.Optional[int] = None top_p: typing.Optional[float] = None typical_p: typing.Optional[float] = None use_cache: typing.Optional[bool] = None )
Parametrization of the text generation process Ad-hoc parametrization of the text generation process
class huggingface_hub.TextToSpeechInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.text_to_speech.TextToSpeechParameters] = None )
Inputs for Text To Speech inference
class huggingface_hub.TextToSpeechOutput
< source >( audio: typing.Any sampling_rate: typing.Any text_to_speech_output_sampling_rate: typing.Optional[float] = None )
Outputs for Text to Speech inference Outputs of inference for the Text To Audio task
class huggingface_hub.TextToSpeechParameters
< source >( generate: typing.Optional[huggingface_hub.inference._generated.types.text_to_speech.TextToSpeechGenerationParameters] = None )
Additional inference parameters Additional inference parameters for Text To Speech
token_classification
class huggingface_hub.TokenClassificationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.token_classification.TokenClassificationParameters] = None )
Inputs for Token Classification inference
class huggingface_hub.TokenClassificationOutputElement
< source >( label: typing.Any score: float end: typing.Optional[int] = None entity_group: typing.Optional[str] = None start: typing.Optional[int] = None word: typing.Optional[str] = None )
Outputs of inference for the Token Classification task
class huggingface_hub.TokenClassificationParameters
< source >( aggregation_strategy: typing.Optional[ForwardRef('TokenClassificationAggregationStrategy')] = None ignore_labels: typing.Optional[typing.List[str]] = None stride: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Token Classification
translation
class huggingface_hub.TranslationInput
< source >( inputs: str parameters: typing.Optional[huggingface_hub.inference._generated.types.translation.TranslationParameters] = None )
Inputs for Translation inference
Outputs of inference for the Translation task
class huggingface_hub.TranslationParameters
< source >( clean_up_tokenization_spaces: typing.Optional[bool] = None generate_parameters: typing.Optional[typing.Dict[str, typing.Any]] = None src_lang: typing.Optional[str] = None tgt_lang: typing.Optional[str] = None truncation: typing.Optional[ForwardRef('TranslationTruncationStrategy')] = None )
Additional inference parameters Additional inference parameters for Translation
video_classification
class huggingface_hub.VideoClassificationInput
< source >( inputs: typing.Any parameters: typing.Optional[huggingface_hub.inference._generated.types.video_classification.VideoClassificationParameters] = None )
Inputs for Video Classification inference
Outputs of inference for the Video Classification task
class huggingface_hub.VideoClassificationParameters
< source >( frame_sampling_rate: typing.Optional[int] = None function_to_apply: typing.Optional[ForwardRef('VideoClassificationOutputTransform')] = None num_frames: typing.Optional[int] = None top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Video Classification
visual_question_answering
class huggingface_hub.VisualQuestionAnsweringInput
< source >( inputs: VisualQuestionAnsweringInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.visual_question_answering.VisualQuestionAnsweringParameters] = None )
Inputs for Visual Question Answering inference
class huggingface_hub.VisualQuestionAnsweringInputData
< source >( image: typing.Any question: typing.Any )
One (image, question) pair to answer
class huggingface_hub.VisualQuestionAnsweringOutputElement
< source >( label: typing.Any score: float answer: typing.Optional[str] = None )
Outputs of inference for the Visual Question Answering task
class huggingface_hub.VisualQuestionAnsweringParameters
< source >( top_k: typing.Optional[int] = None )
Additional inference parameters Additional inference parameters for Visual Question Answering
zero_shot_classification
class huggingface_hub.ZeroShotClassificationInput
< source >( inputs: ZeroShotClassificationInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.zero_shot_classification.ZeroShotClassificationParameters] = None )
Inputs for Zero Shot Classification inference
class huggingface_hub.ZeroShotClassificationInputData
< source >( candidate_labels: typing.List[str] text: str )
The input text data, with candidate labels
Outputs of inference for the Zero Shot Classification task
class huggingface_hub.ZeroShotClassificationParameters
< source >( hypothesis_template: typing.Optional[str] = None multi_label: typing.Optional[bool] = None )
Additional inference parameters Additional inference parameters for Zero Shot Classification
zero_shot_image_classification
class huggingface_hub.ZeroShotImageClassificationInput
< source >( inputs: ZeroShotImageClassificationInputData parameters: typing.Optional[huggingface_hub.inference._generated.types.zero_shot_image_classification.ZeroShotImageClassificationParameters] = None )
Inputs for Zero Shot Image Classification inference
class huggingface_hub.ZeroShotImageClassificationInputData
< source >( candidate_labels: typing.List[str] image: typing.Any )
The input image data, with candidate labels
class huggingface_hub.ZeroShotImageClassificationOutputElement
< source >( label: str score: float )
Outputs of inference for the Zero Shot Image Classification task
class huggingface_hub.ZeroShotImageClassificationParameters
< source >( hypothesis_template: typing.Optional[str] = None )
Additional inference parameters Additional inference parameters for Zero Shot Image Classification
zero_shot_object_detection
class huggingface_hub.ZeroShotObjectDetectionBoundingBox
< source >( xmax: int xmin: int ymax: int ymin: int )
The predicted bounding box. Coordinates are relative to the top left corner of the input image.
class huggingface_hub.ZeroShotObjectDetectionInput
< source >( inputs: ZeroShotObjectDetectionInputData parameters: typing.Optional[typing.Dict[str, typing.Any]] = None )
Inputs for Zero Shot Object Detection inference
class huggingface_hub.ZeroShotObjectDetectionInputData
< source >( candidate_labels: typing.List[str] image: typing.Any )
The input image data, with candidate labels
class huggingface_hub.ZeroShotObjectDetectionOutputElement
< source >( box: ZeroShotObjectDetectionBoundingBox label: str score: float )
Outputs of inference for the Zero Shot Object Detection task