Optimum documentation

RyzenAIModel

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v1.23.3).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

RyzenAIModel

optimum.amd.ryzenai.pipeline

< >

( task model: typing.Optional[typing.Any] = None vaip_config: typing.Optional[str] = None model_type: typing.Optional[str] = None feature_extractor: typing.Union[str, ForwardRef('PreTrainedFeatureExtractor'), NoneType] = None image_processor: typing.Union[str, transformers.image_processing_utils.BaseImageProcessor, NoneType] = None use_fast: bool = True token: typing.Union[bool, str, NoneType] = None revision: typing.Optional[str] = None **kwargs ) Pipeline

Parameters

  • task (str) — The task defining which pipeline will be returned. Available tasks include:
    • “image-classification”
    • “object-detection”
  • model (Optional[Any], defaults to None) — The model that will be used by the pipeline to make predictions. This can be a model identifier or an actual instance of a pretrained model. If not provided, the default model for the specified task will be loaded.
  • vaip_config (Optional[str], defaults to None) — Runtime configuration file for inference with Ryzen IPU. A default config file can be found in the Ryzen AI VOE package, extracted during installation under the name vaip_config.json.
  • model_type (Optional[str], defaults to None) — Model type for the model
  • feature_extractor (Union[str, "PreTrainedFeatureExtractor"], defaults to None) — The feature extractor that will be used by the pipeline to encode data for the model. This can be a model identifier or an actual pretrained feature extractor.
  • image_processor (Union[str, BaseImageProcessor], defaults to None) — The image processor that will be used by the pipeline for image-related tasks.
  • use_fast (bool, defaults to True) — Whether or not to use a Fast tokenizer if possible.
  • token (Union[str, bool], defaults to None) — The token to use as HTTP bearer authorization for remote files. If True, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
  • revision (str, defaults to None) — The specific model version to use, specified as a branch name, tag name, or commit id.
  • **kwargs — Additional keyword arguments passed to the underlying pipeline class.

Returns

Pipeline

An instance of the specified pipeline for the given task and model.

Utility method to build a pipeline for various RyzenAI tasks.

This function creates a pipeline for a specified task, utilizing a given model or loading the default model for the task. The pipeline includes components such as a image processor and model.

Computer vision

class optimum.amd.ryzenai.pipelines.TimmImageClassificationPipeline

< >

( model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] tokenizer: typing.Optional[transformers.tokenization_utils.PreTrainedTokenizer] = None feature_extractor: typing.Optional[ForwardRef('SequenceFeatureExtractor')] = None image_processor: typing.Optional[transformers.image_processing_utils.BaseImageProcessor] = None processor: typing.Optional[transformers.processing_utils.ProcessorMixin] = None modelcard: typing.Optional[transformers.modelcard.ModelCard] = None framework: typing.Optional[str] = None task: str = '' args_parser: ArgumentHandler = None device: typing.Union[int, ForwardRef('torch.device')] = None torch_dtype: typing.Union[str, ForwardRef('torch.dtype'), NoneType] = None binary_output: bool = False **kwargs )

Example usage:

import requests
from PIL import Image

from optimum.amd.ryzenai import pipeline

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

model_id = "mohitsha/timm-resnet18-onnx-quantized-ryzen"

pipe = pipeline("image-classification", model=model_id, vaip_config="vaip_config.json")
print(pipe(image))

class optimum.amd.ryzenai.pipelines.YoloObjectDetectionPipeline

< >

( model: typing.Union[ForwardRef('PreTrainedModel'), ForwardRef('TFPreTrainedModel')] tokenizer: typing.Optional[transformers.tokenization_utils.PreTrainedTokenizer] = None feature_extractor: typing.Optional[ForwardRef('SequenceFeatureExtractor')] = None image_processor: typing.Optional[transformers.image_processing_utils.BaseImageProcessor] = None processor: typing.Optional[transformers.processing_utils.ProcessorMixin] = None modelcard: typing.Optional[transformers.modelcard.ModelCard] = None framework: typing.Optional[str] = None task: str = '' args_parser: ArgumentHandler = None device: typing.Union[int, ForwardRef('torch.device')] = None torch_dtype: typing.Union[str, ForwardRef('torch.dtype'), NoneType] = None binary_output: bool = False **kwargs )

Supported model types

  • yolox
  • yolov3
  • yolov5
  • yolov8

Example usage:

import requests
from PIL import Image

from optimum.amd.ryzenai import pipeline

img = ".\\image.jpg"
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
img = ".\\image2.jpg"

image = Image.open(img)

model_id = "amd/yolox-s"

detector = pipeline("object-detection", model=model_id, vaip_config="vaip_config.json", model_type="yolox")
detector = pipe(image)
< > Update on GitHub