layoutlm-funsd
This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:
- Loss: 0.7243
- Answer: {'precision': 0.7051835853131749, 'recall': 0.8071693448702101, 'f1': 0.7527377521613834, 'number': 809}
- Header: {'precision': 0.3706896551724138, 'recall': 0.36134453781512604, 'f1': 0.36595744680851067, 'number': 119}
- Question: {'precision': 0.8041704442429737, 'recall': 0.8328638497652582, 'f1': 0.8182656826568265, 'number': 1065}
- Overall Precision: 0.7380
- Overall Recall: 0.7943
- Overall F1: 0.7651
- Overall Accuracy: 0.8003
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
1.1725 | 1.0 | 2 | 1.0951 | {'precision': 0.33885350318471336, 'recall': 0.3288009888751545, 'f1': 0.33375156838143033, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.559967585089141, 'recall': 0.6488262910798122, 'f1': 0.6011309264897782, 'number': 1065} | 0.4738 | 0.4802 | 0.4769 | 0.6364 |
1.0154 | 2.0 | 4 | 0.9732 | {'precision': 0.4147521160822249, 'recall': 0.42398022249690975, 'f1': 0.4193154034229829, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.5925020374898126, 'recall': 0.6826291079812207, 'f1': 0.6343804537521816, 'number': 1065} | 0.5184 | 0.5369 | 0.5275 | 0.6891 |
0.9362 | 3.0 | 6 | 0.8900 | {'precision': 0.5035714285714286, 'recall': 0.522867737948084, 'f1': 0.5130382049727107, 'number': 809} | {'precision': 0.06896551724137931, 'recall': 0.01680672268907563, 'f1': 0.027027027027027025, 'number': 119} | {'precision': 0.6452159187129551, 'recall': 0.7154929577464789, 'f1': 0.678539626001781, 'number': 1065} | 0.5790 | 0.5956 | 0.5872 | 0.7197 |
0.8256 | 4.0 | 8 | 0.8352 | {'precision': 0.5638179800221975, 'recall': 0.6279357231149567, 'f1': 0.5941520467836258, 'number': 809} | {'precision': 0.06976744186046512, 'recall': 0.025210084033613446, 'f1': 0.037037037037037035, 'number': 119} | {'precision': 0.6519607843137255, 'recall': 0.7492957746478873, 'f1': 0.6972477064220184, 'number': 1065} | 0.6038 | 0.6568 | 0.6292 | 0.7434 |
0.7591 | 5.0 | 10 | 0.7736 | {'precision': 0.6031914893617021, 'recall': 0.7008652657601978, 'f1': 0.6483704974271013, 'number': 809} | {'precision': 0.10204081632653061, 'recall': 0.04201680672268908, 'f1': 0.05952380952380952, 'number': 119} | {'precision': 0.6701612903225806, 'recall': 0.780281690140845, 'f1': 0.7210412147505423, 'number': 1065} | 0.6294 | 0.7040 | 0.6646 | 0.7644 |
0.7242 | 6.0 | 12 | 0.7291 | {'precision': 0.5970619097586569, 'recall': 0.7033374536464772, 'f1': 0.6458569807037458, 'number': 809} | {'precision': 0.12727272727272726, 'recall': 0.058823529411764705, 'f1': 0.08045977011494251, 'number': 119} | {'precision': 0.7053264604810997, 'recall': 0.7708920187793428, 'f1': 0.7366532077164648, 'number': 1065} | 0.6432 | 0.7010 | 0.6708 | 0.7638 |
0.6542 | 7.0 | 14 | 0.6921 | {'precision': 0.6148148148148148, 'recall': 0.7181705809641533, 'f1': 0.6624857468643102, 'number': 809} | {'precision': 0.1506849315068493, 'recall': 0.09243697478991597, 'f1': 0.11458333333333334, 'number': 119} | {'precision': 0.7185929648241206, 'recall': 0.8056338028169014, 'f1': 0.7596281540504649, 'number': 1065} | 0.6555 | 0.7275 | 0.6897 | 0.7776 |
0.6076 | 8.0 | 16 | 0.6709 | {'precision': 0.6371220020855057, 'recall': 0.7552533992583437, 'f1': 0.6911764705882354, 'number': 809} | {'precision': 0.20253164556962025, 'recall': 0.13445378151260504, 'f1': 0.1616161616161616, 'number': 119} | {'precision': 0.7142857142857143, 'recall': 0.8215962441314554, 'f1': 0.7641921397379913, 'number': 1065} | 0.6637 | 0.7536 | 0.7058 | 0.7878 |
0.5743 | 9.0 | 18 | 0.6503 | {'precision': 0.6582278481012658, 'recall': 0.7713226205191595, 'f1': 0.7103016505406944, 'number': 809} | {'precision': 0.24691358024691357, 'recall': 0.16806722689075632, 'f1': 0.2, 'number': 119} | {'precision': 0.7366638441998307, 'recall': 0.8169014084507042, 'f1': 0.7747105966162066, 'number': 1065} | 0.6851 | 0.7597 | 0.7204 | 0.7929 |
0.5316 | 10.0 | 20 | 0.6438 | {'precision': 0.6608695652173913, 'recall': 0.7515451174289246, 'f1': 0.7032967032967032, 'number': 809} | {'precision': 0.23863636363636365, 'recall': 0.17647058823529413, 'f1': 0.20289855072463767, 'number': 119} | {'precision': 0.7390202702702703, 'recall': 0.8215962441314554, 'f1': 0.7781236104935527, 'number': 1065} | 0.6861 | 0.7546 | 0.7188 | 0.7944 |
0.5033 | 11.0 | 22 | 0.6252 | {'precision': 0.6775599128540305, 'recall': 0.7688504326328801, 'f1': 0.7203242617255357, 'number': 809} | {'precision': 0.3218390804597701, 'recall': 0.23529411764705882, 'f1': 0.27184466019417475, 'number': 119} | {'precision': 0.7491467576791809, 'recall': 0.8244131455399061, 'f1': 0.7849798837729102, 'number': 1065} | 0.7019 | 0.7667 | 0.7329 | 0.8021 |
0.5073 | 12.0 | 24 | 0.6364 | {'precision': 0.6750261233019854, 'recall': 0.7985166872682324, 'f1': 0.7315968289920726, 'number': 809} | {'precision': 0.30612244897959184, 'recall': 0.25210084033613445, 'f1': 0.2764976958525346, 'number': 119} | {'precision': 0.7528089887640449, 'recall': 0.8178403755868544, 'f1': 0.7839783978397841, 'number': 1065} | 0.6994 | 0.7762 | 0.7358 | 0.7987 |
0.4453 | 13.0 | 26 | 0.6300 | {'precision': 0.6767782426778243, 'recall': 0.799752781211372, 'f1': 0.7331444759206799, 'number': 809} | {'precision': 0.26785714285714285, 'recall': 0.25210084033613445, 'f1': 0.2597402597402597, 'number': 119} | {'precision': 0.7495769881556683, 'recall': 0.831924882629108, 'f1': 0.7886070315976857, 'number': 1065} | 0.6947 | 0.7842 | 0.7367 | 0.8006 |
0.4563 | 14.0 | 28 | 0.6225 | {'precision': 0.6713819368879217, 'recall': 0.7626699629171817, 'f1': 0.7141203703703703, 'number': 809} | {'precision': 0.2743362831858407, 'recall': 0.2605042016806723, 'f1': 0.26724137931034486, 'number': 119} | {'precision': 0.7542662116040956, 'recall': 0.8300469483568075, 'f1': 0.7903442109968708, 'number': 1065} | 0.6951 | 0.7687 | 0.7300 | 0.7987 |
0.414 | 15.0 | 30 | 0.6206 | {'precision': 0.6900328587075575, 'recall': 0.7787391841779975, 'f1': 0.7317073170731707, 'number': 809} | {'precision': 0.27884615384615385, 'recall': 0.24369747899159663, 'f1': 0.2600896860986547, 'number': 119} | {'precision': 0.7674624226348364, 'recall': 0.8150234741784037, 'f1': 0.7905282331511838, 'number': 1065} | 0.7109 | 0.7662 | 0.7375 | 0.8033 |
0.4023 | 16.0 | 32 | 0.6221 | {'precision': 0.6893203883495146, 'recall': 0.7898640296662547, 'f1': 0.7361751152073734, 'number': 809} | {'precision': 0.2621359223300971, 'recall': 0.226890756302521, 'f1': 0.24324324324324326, 'number': 119} | {'precision': 0.7527993109388458, 'recall': 0.8206572769953052, 'f1': 0.7852650494159928, 'number': 1065} | 0.7029 | 0.7727 | 0.7361 | 0.8027 |
0.3783 | 17.0 | 34 | 0.6263 | {'precision': 0.693304535637149, 'recall': 0.7935723114956736, 'f1': 0.740057636887608, 'number': 809} | {'precision': 0.25892857142857145, 'recall': 0.24369747899159663, 'f1': 0.2510822510822511, 'number': 119} | {'precision': 0.7519116397621071, 'recall': 0.8309859154929577, 'f1': 0.7894736842105263, 'number': 1065} | 0.7025 | 0.7807 | 0.7395 | 0.8018 |
0.3868 | 18.0 | 36 | 0.6347 | {'precision': 0.6956989247311828, 'recall': 0.799752781211372, 'f1': 0.7441058079355952, 'number': 809} | {'precision': 0.2845528455284553, 'recall': 0.29411764705882354, 'f1': 0.2892561983471075, 'number': 119} | {'precision': 0.771729587357331, 'recall': 0.8253521126760563, 'f1': 0.7976406533575316, 'number': 1065} | 0.7121 | 0.7832 | 0.7460 | 0.8027 |
0.324 | 19.0 | 38 | 0.6480 | {'precision': 0.6813880126182965, 'recall': 0.8009888751545118, 'f1': 0.7363636363636363, 'number': 809} | {'precision': 0.28, 'recall': 0.29411764705882354, 'f1': 0.28688524590163933, 'number': 119} | {'precision': 0.775692582663092, 'recall': 0.8150234741784037, 'f1': 0.7948717948717948, 'number': 1065} | 0.7066 | 0.7782 | 0.7407 | 0.7999 |
0.3436 | 20.0 | 40 | 0.6438 | {'precision': 0.6919786096256685, 'recall': 0.799752781211372, 'f1': 0.7419724770642202, 'number': 809} | {'precision': 0.2682926829268293, 'recall': 0.2773109243697479, 'f1': 0.27272727272727276, 'number': 119} | {'precision': 0.7775816416593115, 'recall': 0.8272300469483568, 'f1': 0.8016378525932666, 'number': 1065} | 0.7125 | 0.7832 | 0.7462 | 0.8015 |
0.3081 | 21.0 | 42 | 0.6469 | {'precision': 0.7048458149779736, 'recall': 0.7911001236093943, 'f1': 0.7454863133372162, 'number': 809} | {'precision': 0.2966101694915254, 'recall': 0.29411764705882354, 'f1': 0.2953586497890296, 'number': 119} | {'precision': 0.7796167247386759, 'recall': 0.8403755868544601, 'f1': 0.8088567555354722, 'number': 1065} | 0.7222 | 0.7878 | 0.7535 | 0.8075 |
0.3109 | 22.0 | 44 | 0.6553 | {'precision': 0.6980306345733042, 'recall': 0.788627935723115, 'f1': 0.7405687753917585, 'number': 809} | {'precision': 0.29310344827586204, 'recall': 0.2857142857142857, 'f1': 0.2893617021276596, 'number': 119} | {'precision': 0.7737991266375546, 'recall': 0.831924882629108, 'f1': 0.8018099547511313, 'number': 1065} | 0.7163 | 0.7817 | 0.7476 | 0.8024 |
0.3021 | 23.0 | 46 | 0.6704 | {'precision': 0.7031763417305587, 'recall': 0.7935723114956736, 'f1': 0.7456445993031359, 'number': 809} | {'precision': 0.275, 'recall': 0.2773109243697479, 'f1': 0.27615062761506276, 'number': 119} | {'precision': 0.78584229390681, 'recall': 0.8234741784037559, 'f1': 0.8042182485098579, 'number': 1065} | 0.7222 | 0.7787 | 0.7494 | 0.7991 |
0.2921 | 24.0 | 48 | 0.6767 | {'precision': 0.7011995637949836, 'recall': 0.7948084054388134, 'f1': 0.7450753186558517, 'number': 809} | {'precision': 0.29310344827586204, 'recall': 0.2857142857142857, 'f1': 0.2893617021276596, 'number': 119} | {'precision': 0.7777777777777778, 'recall': 0.8215962441314554, 'f1': 0.7990867579908676, 'number': 1065} | 0.7192 | 0.7787 | 0.7478 | 0.7980 |
0.2837 | 25.0 | 50 | 0.6758 | {'precision': 0.6989130434782609, 'recall': 0.7948084054388134, 'f1': 0.7437825332562175, 'number': 809} | {'precision': 0.2982456140350877, 'recall': 0.2857142857142857, 'f1': 0.2918454935622318, 'number': 119} | {'precision': 0.7662901824500434, 'recall': 0.828169014084507, 'f1': 0.796028880866426, 'number': 1065} | 0.7135 | 0.7822 | 0.7463 | 0.7983 |
0.2565 | 26.0 | 52 | 0.6793 | {'precision': 0.6942949407965554, 'recall': 0.7972805933250927, 'f1': 0.7422324510932106, 'number': 809} | {'precision': 0.3153153153153153, 'recall': 0.29411764705882354, 'f1': 0.30434782608695654, 'number': 119} | {'precision': 0.7700348432055749, 'recall': 0.8300469483568075, 'f1': 0.7989154993221871, 'number': 1065} | 0.7148 | 0.7847 | 0.7481 | 0.7970 |
0.2487 | 27.0 | 54 | 0.6859 | {'precision': 0.6886993603411514, 'recall': 0.7985166872682324, 'f1': 0.7395535203205496, 'number': 809} | {'precision': 0.3275862068965517, 'recall': 0.31932773109243695, 'f1': 0.3234042553191489, 'number': 119} | {'precision': 0.7835420393559929, 'recall': 0.8225352112676056, 'f1': 0.8025652771415483, 'number': 1065} | 0.7182 | 0.7827 | 0.7491 | 0.7959 |
0.2663 | 28.0 | 56 | 0.6907 | {'precision': 0.692390139335477, 'recall': 0.7985166872682324, 'f1': 0.7416762342135478, 'number': 809} | {'precision': 0.36065573770491804, 'recall': 0.3697478991596639, 'f1': 0.36514522821576767, 'number': 119} | {'precision': 0.793418647166362, 'recall': 0.8150234741784037, 'f1': 0.8040759610930986, 'number': 1065} | 0.7250 | 0.7817 | 0.7523 | 0.7938 |
0.2679 | 29.0 | 58 | 0.6872 | {'precision': 0.7095343680709535, 'recall': 0.7911001236093943, 'f1': 0.7481005260081823, 'number': 809} | {'precision': 0.3435114503816794, 'recall': 0.37815126050420167, 'f1': 0.36, 'number': 119} | {'precision': 0.7789566755083996, 'recall': 0.8272300469483568, 'f1': 0.802367941712204, 'number': 1065} | 0.7237 | 0.7858 | 0.7534 | 0.7990 |
0.2272 | 30.0 | 60 | 0.6887 | {'precision': 0.7052401746724891, 'recall': 0.7985166872682324, 'f1': 0.7489855072463769, 'number': 809} | {'precision': 0.3706896551724138, 'recall': 0.36134453781512604, 'f1': 0.36595744680851067, 'number': 119} | {'precision': 0.7846425419240953, 'recall': 0.8347417840375587, 'f1': 0.8089171974522293, 'number': 1065} | 0.7289 | 0.7918 | 0.7590 | 0.7977 |
0.2263 | 31.0 | 62 | 0.6959 | {'precision': 0.6960257787325457, 'recall': 0.8009888751545118, 'f1': 0.7448275862068966, 'number': 809} | {'precision': 0.35135135135135137, 'recall': 0.3277310924369748, 'f1': 0.3391304347826087, 'number': 119} | {'precision': 0.7912578055307761, 'recall': 0.8328638497652582, 'f1': 0.8115279048490394, 'number': 1065} | 0.7277 | 0.7898 | 0.7575 | 0.7973 |
0.2366 | 32.0 | 64 | 0.6995 | {'precision': 0.6982758620689655, 'recall': 0.8009888751545118, 'f1': 0.7461139896373058, 'number': 809} | {'precision': 0.3652173913043478, 'recall': 0.35294117647058826, 'f1': 0.35897435897435903, 'number': 119} | {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065} | 0.7289 | 0.7878 | 0.7572 | 0.7963 |
0.214 | 33.0 | 66 | 0.6985 | {'precision': 0.7050438596491229, 'recall': 0.7948084054388134, 'f1': 0.747239976757699, 'number': 809} | {'precision': 0.36585365853658536, 'recall': 0.37815126050420167, 'f1': 0.371900826446281, 'number': 119} | {'precision': 0.7907390917186109, 'recall': 0.8338028169014085, 'f1': 0.8117001828153564, 'number': 1065} | 0.7303 | 0.7908 | 0.7593 | 0.7990 |
0.2189 | 34.0 | 68 | 0.6991 | {'precision': 0.7067833698030634, 'recall': 0.7985166872682324, 'f1': 0.7498549042367965, 'number': 809} | {'precision': 0.3524590163934426, 'recall': 0.36134453781512604, 'f1': 0.35684647302904565, 'number': 119} | {'precision': 0.7921847246891652, 'recall': 0.8375586854460094, 'f1': 0.8142400730260155, 'number': 1065} | 0.7313 | 0.7933 | 0.7610 | 0.8012 |
0.1994 | 35.0 | 70 | 0.7038 | {'precision': 0.6935312831389183, 'recall': 0.8084054388133498, 'f1': 0.7465753424657534, 'number': 809} | {'precision': 0.3684210526315789, 'recall': 0.35294117647058826, 'f1': 0.3605150214592275, 'number': 119} | {'precision': 0.7903225806451613, 'recall': 0.828169014084507, 'f1': 0.8088033012379642, 'number': 1065} | 0.7262 | 0.7918 | 0.7576 | 0.7990 |
0.2139 | 36.0 | 72 | 0.7073 | {'precision': 0.6878914405010439, 'recall': 0.8145859085290482, 'f1': 0.745897000565931, 'number': 809} | {'precision': 0.3761467889908257, 'recall': 0.3445378151260504, 'f1': 0.3596491228070175, 'number': 119} | {'precision': 0.7965641952983725, 'recall': 0.8272300469483568, 'f1': 0.8116075541225242, 'number': 1065} | 0.7276 | 0.7933 | 0.7590 | 0.7984 |
0.2208 | 37.0 | 74 | 0.7039 | {'precision': 0.6869109947643979, 'recall': 0.8108776266996292, 'f1': 0.7437641723356009, 'number': 809} | {'precision': 0.3853211009174312, 'recall': 0.35294117647058826, 'f1': 0.36842105263157904, 'number': 119} | {'precision': 0.7980072463768116, 'recall': 0.8272300469483568, 'f1': 0.8123559243891194, 'number': 1065} | 0.7283 | 0.7923 | 0.7590 | 0.8012 |
0.2015 | 38.0 | 76 | 0.7031 | {'precision': 0.7013963480128894, 'recall': 0.8071693448702101, 'f1': 0.7505747126436783, 'number': 809} | {'precision': 0.3805309734513274, 'recall': 0.36134453781512604, 'f1': 0.3706896551724138, 'number': 119} | {'precision': 0.7974683544303798, 'recall': 0.828169014084507, 'f1': 0.8125287885766928, 'number': 1065} | 0.7340 | 0.7918 | 0.7618 | 0.8060 |
0.2028 | 39.0 | 78 | 0.7049 | {'precision': 0.7100656455142232, 'recall': 0.8022249690976514, 'f1': 0.7533372025536854, 'number': 809} | {'precision': 0.37606837606837606, 'recall': 0.3697478991596639, 'f1': 0.3728813559322034, 'number': 119} | {'precision': 0.7965796579657966, 'recall': 0.8309859154929577, 'f1': 0.8134191176470588, 'number': 1065} | 0.7367 | 0.7918 | 0.7632 | 0.8050 |
0.1794 | 40.0 | 80 | 0.7078 | {'precision': 0.7075575027382256, 'recall': 0.7985166872682324, 'f1': 0.7502903600464577, 'number': 809} | {'precision': 0.3728813559322034, 'recall': 0.3697478991596639, 'f1': 0.37130801687763715, 'number': 119} | {'precision': 0.799819657348963, 'recall': 0.8328638497652582, 'f1': 0.8160073597056118, 'number': 1065} | 0.7369 | 0.7913 | 0.7631 | 0.8041 |
0.1939 | 41.0 | 82 | 0.7132 | {'precision': 0.7007534983853606, 'recall': 0.8046971569839307, 'f1': 0.7491369390103566, 'number': 809} | {'precision': 0.3793103448275862, 'recall': 0.3697478991596639, 'f1': 0.374468085106383, 'number': 119} | {'precision': 0.8, 'recall': 0.8300469483568075, 'f1': 0.8147465437788018, 'number': 1065} | 0.7344 | 0.7923 | 0.7622 | 0.8004 |
0.1763 | 42.0 | 84 | 0.7196 | {'precision': 0.697228144989339, 'recall': 0.8084054388133498, 'f1': 0.748712077847739, 'number': 809} | {'precision': 0.3826086956521739, 'recall': 0.3697478991596639, 'f1': 0.37606837606837606, 'number': 119} | {'precision': 0.7969314079422383, 'recall': 0.8291079812206573, 'f1': 0.8127013345605153, 'number': 1065} | 0.7316 | 0.7933 | 0.7612 | 0.7983 |
0.1864 | 43.0 | 86 | 0.7207 | {'precision': 0.7008547008547008, 'recall': 0.8108776266996292, 'f1': 0.7518624641833811, 'number': 809} | {'precision': 0.37606837606837606, 'recall': 0.3697478991596639, 'f1': 0.3728813559322034, 'number': 119} | {'precision': 0.7992766726943942, 'recall': 0.8300469483568075, 'f1': 0.8143712574850298, 'number': 1065} | 0.7337 | 0.7948 | 0.7630 | 0.7991 |
0.1852 | 44.0 | 88 | 0.7192 | {'precision': 0.7067099567099567, 'recall': 0.8071693448702101, 'f1': 0.753606462781304, 'number': 809} | {'precision': 0.3697478991596639, 'recall': 0.3697478991596639, 'f1': 0.3697478991596639, 'number': 119} | {'precision': 0.7992799279927992, 'recall': 0.8338028169014085, 'f1': 0.8161764705882354, 'number': 1065} | 0.7358 | 0.7953 | 0.7644 | 0.8012 |
0.1821 | 45.0 | 90 | 0.7190 | {'precision': 0.7071583514099783, 'recall': 0.8059332509270705, 'f1': 0.753321779318313, 'number': 809} | {'precision': 0.3706896551724138, 'recall': 0.36134453781512604, 'f1': 0.36595744680851067, 'number': 119} | {'precision': 0.8034265103697025, 'recall': 0.8366197183098592, 'f1': 0.8196872125114996, 'number': 1065} | 0.7387 | 0.7958 | 0.7662 | 0.8018 |
0.1804 | 46.0 | 92 | 0.7194 | {'precision': 0.7114754098360656, 'recall': 0.8046971569839307, 'f1': 0.7552204176334106, 'number': 809} | {'precision': 0.3739130434782609, 'recall': 0.36134453781512604, 'f1': 0.36752136752136755, 'number': 119} | {'precision': 0.8016230838593328, 'recall': 0.8347417840375587, 'f1': 0.8178472861085557, 'number': 1065} | 0.7401 | 0.7943 | 0.7662 | 0.8011 |
0.1879 | 47.0 | 94 | 0.7206 | {'precision': 0.7099236641221374, 'recall': 0.8046971569839307, 'f1': 0.7543453070683662, 'number': 809} | {'precision': 0.3739130434782609, 'recall': 0.36134453781512604, 'f1': 0.36752136752136755, 'number': 119} | {'precision': 0.8052536231884058, 'recall': 0.8347417840375587, 'f1': 0.8197325956662057, 'number': 1065} | 0.7411 | 0.7943 | 0.7668 | 0.8015 |
0.1754 | 48.0 | 96 | 0.7223 | {'precision': 0.7074756229685807, 'recall': 0.8071693448702101, 'f1': 0.754041570438799, 'number': 809} | {'precision': 0.37719298245614036, 'recall': 0.36134453781512604, 'f1': 0.36909871244635195, 'number': 119} | {'precision': 0.8070973612374887, 'recall': 0.8328638497652582, 'f1': 0.8197781885397413, 'number': 1065} | 0.7411 | 0.7943 | 0.7668 | 0.8010 |
0.1712 | 49.0 | 98 | 0.7238 | {'precision': 0.705945945945946, 'recall': 0.8071693448702101, 'f1': 0.7531718569780853, 'number': 809} | {'precision': 0.37719298245614036, 'recall': 0.36134453781512604, 'f1': 0.36909871244635195, 'number': 119} | {'precision': 0.8056312443233424, 'recall': 0.8328638497652582, 'f1': 0.8190212373037857, 'number': 1065} | 0.7397 | 0.7943 | 0.7660 | 0.8005 |
0.1834 | 50.0 | 100 | 0.7243 | {'precision': 0.7051835853131749, 'recall': 0.8071693448702101, 'f1': 0.7527377521613834, 'number': 809} | {'precision': 0.3706896551724138, 'recall': 0.36134453781512604, 'f1': 0.36595744680851067, 'number': 119} | {'precision': 0.8041704442429737, 'recall': 0.8328638497652582, 'f1': 0.8182656826568265, 'number': 1065} | 0.7380 | 0.7943 | 0.7651 | 0.8003 |
Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu102
- Datasets 2.5.1
- Tokenizers 0.12.1
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.