|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- snli |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-contradiction |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: snli |
|
type: snli |
|
args: plain_text |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 34.4237 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-contradiction |
|
|
|
This model is a fine-tuned version of [domenicrosati/t5-small-finetuned-contradiction](https://huggingface.co/domenicrosati/t5-small-finetuned-contradiction) on the snli dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0458 |
|
- Rouge1: 34.4237 |
|
- Rouge2: 14.5442 |
|
- Rougel: 32.5483 |
|
- Rougelsum: 32.5785 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 1.8605 | 1.0 | 2863 | 2.0813 | 34.4597 | 14.5186 | 32.6909 | 32.7097 | |
|
| 1.9209 | 2.0 | 5726 | 2.0721 | 34.3859 | 14.5733 | 32.5188 | 32.5524 | |
|
| 1.9367 | 3.0 | 8589 | 2.0623 | 34.4192 | 14.455 | 32.581 | 32.5962 | |
|
| 1.9539 | 4.0 | 11452 | 2.0565 | 34.5148 | 14.6131 | 32.6786 | 32.7174 | |
|
| 1.9655 | 5.0 | 14315 | 2.0538 | 34.4393 | 14.6439 | 32.6344 | 32.6587 | |
|
| 1.9683 | 6.0 | 17178 | 2.0493 | 34.7199 | 14.7763 | 32.8625 | 32.8782 | |
|
| 1.9735 | 7.0 | 20041 | 2.0476 | 34.5366 | 14.6362 | 32.6939 | 32.7177 | |
|
| 1.98 | 8.0 | 22904 | 2.0458 | 34.5 | 14.5695 | 32.6219 | 32.6478 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.18.0 |
|
- Pytorch 1.11.0+cu102 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|