bert-base-german-cased-20000-ner

This model is a fine-tuned version of bert-base-german-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0826
  • Precision: 0.8904
  • Recall: 0.8693
  • F1: 0.8797
  • Accuracy: 0.9832

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.11 64 0.0840 0.8076 0.7842 0.7957 0.9752
No log 0.23 128 0.0787 0.8119 0.7735 0.7922 0.9746
No log 0.34 192 0.0677 0.8264 0.8362 0.8313 0.9794
No log 0.45 256 0.0630 0.8440 0.8125 0.8280 0.9801
No log 0.57 320 0.0664 0.8035 0.8391 0.8209 0.9782
No log 0.68 384 0.0674 0.8850 0.8285 0.8558 0.9819
No log 0.79 448 0.0631 0.8834 0.8598 0.8714 0.9825
0.094 0.9 512 0.0572 0.8933 0.8462 0.8691 0.9832
0.094 1.02 576 0.0728 0.8520 0.8681 0.8600 0.9795
0.094 1.13 640 0.0784 0.8496 0.8717 0.8605 0.9800
0.094 1.24 704 0.0721 0.8868 0.8527 0.8695 0.9814
0.094 1.36 768 0.0700 0.8755 0.8362 0.8554 0.9808
0.094 1.47 832 0.0590 0.8662 0.8610 0.8636 0.9822
0.094 1.58 896 0.0615 0.8692 0.8764 0.8728 0.9821
0.094 1.7 960 0.0670 0.8812 0.8557 0.8683 0.9826
0.0413 1.81 1024 0.0623 0.9061 0.8557 0.8802 0.9843
0.0413 1.92 1088 0.0570 0.8891 0.8770 0.8830 0.9833
0.0413 2.04 1152 0.0643 0.8859 0.8859 0.8859 0.9831
0.0413 2.15 1216 0.0705 0.8824 0.8740 0.8782 0.9830
0.0413 2.26 1280 0.0698 0.8818 0.8557 0.8685 0.9824
0.0413 2.37 1344 0.0826 0.8904 0.8693 0.8797 0.9832

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.9.0+cu111
  • Datasets 2.1.0
  • Tokenizers 0.12.1
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.