domischwimmbeck commited on
Commit
d90c9c1
·
1 Parent(s): 1316469

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-base-german-cased-20000-ner
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-base-german-cased-20000-ner
19
+
20
+ This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0527
23
+ - Precision: 0.7423
24
+ - Recall: 0.8643
25
+ - F1: 0.7987
26
+ - Accuracy: 0.9879
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | No log | 0.1 | 64 | 0.0867 | 0.5127 | 0.8679 | 0.6446 | 0.975 |
58
+ | No log | 0.19 | 128 | 0.0539 | 0.4549 | 0.8643 | 0.5961 | 0.9774 |
59
+ | No log | 0.29 | 192 | 0.0382 | 0.7763 | 0.8429 | 0.8082 | 0.9902 |
60
+ | No log | 0.38 | 256 | 0.0405 | 0.7697 | 0.8714 | 0.8174 | 0.9898 |
61
+ | No log | 0.48 | 320 | 0.0292 | 0.8027 | 0.8429 | 0.8223 | 0.9923 |
62
+ | No log | 0.58 | 384 | 0.0478 | 0.7227 | 0.875 | 0.7916 | 0.9875 |
63
+ | No log | 0.67 | 448 | 0.0293 | 0.7774 | 0.8107 | 0.7937 | 0.9918 |
64
+ | 0.09 | 0.77 | 512 | 0.0527 | 0.7423 | 0.8643 | 0.7987 | 0.9879 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.18.0
70
+ - Pytorch 1.9.0+cu111
71
+ - Datasets 2.1.0
72
+ - Tokenizers 0.12.1