File size: 1,854 Bytes
deaecbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf9f52
 
 
 
 
deaecbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abf9f52
8d0b393
 
deaecbf
 
8d0b393
deaecbf
8d0b393
deaecbf
 
 
 
 
abf9f52
 
 
 
deaecbf
 
 
 
8d0b393
deaecbf
8d0b393
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
base_model: DeepPavlov/rubert-base-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: rubert-finetuned-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# rubert-finetuned-ner

This model is a fine-tuned version of [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1538
- Precision: 0.8891
- Recall: 0.9071
- F1: 0.8980
- Accuracy: 0.9591

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.088         | 0.5   | 625  | 0.2382          | 0.8027    | 0.8614 | 0.8310 | 0.9320   |
| 0.1155        | 1.0   | 1250 | 0.1831          | 0.8518    | 0.8830 | 0.8671 | 0.9474   |
| 0.1477        | 1.5   | 1875 | 0.1770          | 0.8814    | 0.9012 | 0.8912 | 0.9561   |
| 0.0629        | 2.0   | 2500 | 0.1538          | 0.8891    | 0.9071 | 0.8980 | 0.9591   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1