lung-cancer-detection / architecture.py
dorsar's picture
Upload 775 files
03a8782 verified
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import os
import copy
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torchvision.models import resnet50, ResNet50_Weights
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
# data transformations with augmentation
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
val_test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
class ResNetLungCancer(nn.Module):
def __init__(self, num_classes, use_pretrained=True):
super(ResNetLungCancer, self).__init__()
if use_pretrained:
weights = ResNet50_Weights.IMAGENET1K_V1
else:
weights = None
self.resnet = resnet50(weights=weights)
num_ftrs = self.resnet.fc.in_features
self.resnet.fc = nn.Identity() # remove the final fully connected layer
self.fc = nn.Sequential(
nn.Linear(num_ftrs, 256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(256, num_classes)
)
def forward(self, x):
x = self.resnet(x)
return self.fc(x)
# train function
def train_model(model, train_loader, valid_loader, criterion, optimizer, scheduler, num_epochs=50, device='cuda'):
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print(f'Epoch {epoch}/{num_epochs - 1}')
print('-' * 10)
for phase in ['train', 'valid']:
if phase == 'train':
model.train()
dataloader = train_loader
else:
model.eval()
dataloader = valid_loader
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloader:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloader.dataset)
epoch_acc = running_corrects.double() / len(dataloader.dataset)
print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if phase == 'valid':
scheduler.step(epoch_acc)
current_lr = optimizer.param_groups[0]['lr']
print(f'Learning rate: {current_lr}')
if epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
print(f'Best val Acc: {best_acc:.4f}')
model.load_state_dict(best_model_wts)
return model
# eval the model
def evaluate_model(model, test_loader, device='cuda'):
model.eval()
running_corrects = 0
with torch.no_grad():
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
running_corrects += torch.sum(preds == labels.data)
test_acc = running_corrects.double() / len(test_loader.dataset)
print(f'Test Acc: {test_acc:.4f}')
if __name__ == "__main__":
# device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# data
data_dir = 'Processed_Data'
train_dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), transform=train_transform)
valid_dataset = datasets.ImageFolder(os.path.join(data_dir, 'valid'), transform=val_test_transform)
test_dataset = datasets.ImageFolder(os.path.join(data_dir, 'test'), transform=val_test_transform)
# dataloaders
batch_size = 32
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, num_workers=4)
print(f"Number of training images: {len(train_dataset)}")
print(f"Number of validation images: {len(valid_dataset)}")
print(f"Number of test images: {len(test_dataset)}")
# initialize model, loss, and optimizer
num_classes = len(train_dataset.classes)
model = ResNetLungCancer(num_classes)
model = model.to(device)
criterion = nn.CrossEntropyLoss()
pretrained_params = list(model.resnet.parameters())
new_params = list(model.fc.parameters())
optimizer = optim.Adam([
{'params': pretrained_params, 'lr': 1e-5},
{'params': new_params, 'lr': 1e-4}
], weight_decay=1e-6)
scheduler = ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=7)
# train the model
trained_model = train_model(model, train_loader, valid_loader, criterion, optimizer, scheduler, num_epochs=50, device=device)
# eval the model
evaluate_model(trained_model, test_loader, device=device)
# save the model weights
torch.save(trained_model.state_dict(), 'lung_cancer_detection_model.pth')
# save the model in ONNX format
dummy_input = torch.randn(1, 3, 224, 224).to(device)
torch.onnx.export(trained_model, dummy_input, "lung_cancer_detection_model.onnx", input_names=['input'], output_names=['output'])
print("Training completed. Model saved.")