fold_2
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1221
- F1: 0.8632
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.4106 | 1.0 | 300 | 0.3857 | 0.8353 |
0.2705 | 2.0 | 600 | 0.3586 | 0.8615 |
0.1633 | 3.0 | 900 | 0.4721 | 0.8439 |
0.0804 | 4.0 | 1200 | 0.5829 | 0.8503 |
0.052 | 5.0 | 1500 | 0.7545 | 0.8536 |
0.0245 | 6.0 | 1800 | 1.0105 | 0.8581 |
0.0119 | 7.0 | 2100 | 0.9987 | 0.8609 |
0.006 | 8.0 | 2400 | 1.1393 | 0.8603 |
0.0041 | 9.0 | 2700 | 1.1023 | 0.8644 |
0.0015 | 10.0 | 3000 | 1.1221 | 0.8632 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 30
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dpravinv/fold_2
Base model
answerdotai/ModernBERT-base