vibert-capu / README.md
dragonSwing's picture
Add vocab
d8fc81f
|
raw
history blame
3.75 kB
metadata
language:
  - vi
tags:
  - capitalization
  - punctuation
  - token-classification
  - sequence-tagger-model
license: mit
datasets:
  - oscar-corpus/OSCAR-2109
metrics:
  - accuracy
  - precision
  - recall
  - f1

✨ vibert-capitalization-punctuation

This a viBERT model finetuned for punctuation restoration on the OSCAR-2109 dataset. The model predicts the punctuation and upper-casing of plain, lower-cased text. An example use case can be ASR output. Or other cases when text has lost punctuation. This model is intended for direct use as a punctuation restoration model for the general Vietnamese language. Alternatively, you can use this for further fine-tuning on domain-specific texts for punctuation restoration tasks. Model restores the following punctuations -- [. , : ? ] The model also restores the complex upper-casing of words like YouTube, MobiFone.


🚋 Usage

Below is a quick way to get up and running with the model.

  1. Download files from hub
import os
import shutil
import sys
from huggingface_hub import snapshot_download

cache_dir = "./capu"
def download_files(repo_id, cache_dir=None, ignore_regex=None):
    download_dir = snapshot_download(repo_id=repo_id, cache_dir=cache_dir, ignore_regex=ignore_regex)
    if cache_dir is None or download_dir == cache_dir:
        return download_dir  

    file_names = os.listdir(download_dir)
    for file_name in file_names:
        shutil.move(os.path.join(download_dir, file_name), cache_dir)
    os.rmdir(download_dir)
    return cache_dir
  
download_files(repo_id="dragonSwing/vibert-capu", cache_dir=cache_dir, ignore_regex=["*.json", "*.bin"])
sys.path.append(cache_dir)
  1. Sample python code
import os
from gec_model import GecBERTModel
model = GecBERTModel(
    vocab_path=os.path.join(cache_dir, "vocabulary"),
    model_paths="dragonSwing/vibert-capu",
    split_chunk=True
)
model("theo đó thủ tướng dự kiến tiếp bộ trưởng nông nghiệp mỹ tom wilsack bộ trưởng thương mại mỹ gina raimondo bộ trưởng tài chính janet yellen gặp gỡ thượng nghị sĩ patrick leahy và một số nghị sĩ mỹ khác")
# Always return list of outputs.
# ['Theo đó, Thủ tướng dự kiến tiếp Bộ trưởng Nông nghiệp Mỹ Tom Wilsack, Bộ trưởng Thương mại Mỹ Gina Raimondo, Bộ trưởng Tài chính Janet Yellen, gặp gỡ Thượng nghị sĩ Patrick Leahy và một số nghị sĩ Mỹ khác.']

This model can work on arbitrarily large text in Vietnamese language.


📡 Training data

Here is the number of product reviews we used for fine-tuning the model: | Language | Number of text samples| | -------- | ----------------- | | Vietnamese | 5,600,000 |

🎯 Accuracy

Below is a breakdown of the performance of the model by each label on 120,000 held-out text samples: | label | precision | recall | f1-score | support| | --------- | -------------|-------- | ----------|--------| | Upper | 0.88 | 0.89 | 0.89 | 56497
| Complex-Upper | 0.92 | 0.83 | 0.88 | 480
| . | 0.81 | 0.82 | 0.82 | 18139
| , | 0.73 | 0.70 | 0.71 | 22961
| : | 0.74 | 0.56 | 0.64 | 1432
| ? | 0.80 | 0.76 | 0.78 | 1730
| none | 0.99 | 0.99 | 0.99 |475611