metadata
language: vi
datasets:
- vlsp
- common_voice
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
license: apache-2.0
model-index:
- name: Wav2vec2 Base Vietnamese
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice vi
type: common_voice
args: vi
metrics:
- name: Test WER
type: wer
value: 31.353591
Wav2Vec2-Large-XLSR-53-Vietnamese
Fine-tuned dragonSwing/wav2vec2-base-pretrain-vietnamese on Vietnamese Speech Recognition task using 100h labelled data from VSLP dataset. When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "vi", split="test")
processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Evaluation
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model.to("cuda")
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 31.353591%