|
--- |
|
license: cc-by-4.0 |
|
datasets: |
|
- dsfsi/vukuzenzele-monolingual |
|
- nchlt |
|
- dsfsi/PuoData |
|
- dsfsi/gov-za-monolingual |
|
language: |
|
- tn |
|
library_name: transformers |
|
pipeline_tag: fill-mask |
|
tags: |
|
- masked langauge model |
|
- setswana |
|
--- |
|
# PuoBerta: A curated Setswana Language Model |
|
|
|
[![Zenodo doi badge](https://img.shields.io/badge/DOI-10.5281%2Fzenodo.8434795-blue.svg)](https://doi.org/10.5281/zenodo.8434795) [![arXiv](https://img.shields.io/badge/arXiv-2310.09141-b31b1b.svg)](https://arxiv.org/abs/2310.09141) π€ [https://huggingface.co/dsfsi/PuoBERTa](https://huggingface.co/dsfsi/PuoBERTa) |
|
|
|
|
|
Give Feedback π: [DSFSI Resource Feedback Form](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/formResponse) |
|
|
|
A Roberta-based language model specially designed for Setswana, using the new PuoData dataset. |
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
|
This is a masked language model trained on Setswana corpora, making it a valuable tool for a range of downstream applications from translation to content creation. It's powered by the PuoData dataset to ensure accuracy and cultural relevance. |
|
|
|
- **Developed by:** Vukosi Marivate ([@vukosi](https://huggingface.co/@vukosi)), Moseli Mots'Oehli ([@MoseliMotsoehli](https://huggingface.co/@MoseliMotsoehli)) , Valencia Wagner, Richard Lastrucci and Isheanesu Dzingirai |
|
- **Model type:** RoBERTa Model |
|
- **Language(s) (NLP):** Setswana |
|
- **License:** CC BY 4.0 |
|
|
|
|
|
### Usage |
|
|
|
Use this model filling in masks or finetune for downstream tasks. Hereβs a simple example for masked prediction: |
|
|
|
```python |
|
from transformers import RobertaTokenizer, RobertaModel |
|
|
|
# Load model and tokenizer |
|
model = RobertaModel.from_pretrained('dsfsi/PuoBERTa') |
|
tokenizer = RobertaTokenizer.from_pretrained('dsfsi/PuoBERTa') |
|
|
|
``` |
|
|
|
### Downstream Use |
|
|
|
## Downstream Performance |
|
|
|
### Daily News Dikgang |
|
|
|
Learn more about the dataset in the [Dataset Folder](daily-news-dikgang) |
|
|
|
| **Model** | **5-fold Cross Validation F1** | **Test F1** | |
|
|-----------------------------|--------------------------------------|-------------------| |
|
| Logistic Regression + TFIDF | 60.1 | 56.2 | |
|
| NCHLT TSN RoBERTa | 64.7 | 60.3 | |
|
| PuoBERTa | **63.8** | **62.9** | |
|
| PuoBERTaJW300 | 66.2 | 65.4 | |
|
|
|
Downstream News Categorisation model π€ [https://huggingface.co/dsfsi/PuoBERTa-News](https://huggingface.co/dsfsi/PuoBERTa-News) |
|
|
|
### MasakhaPOS |
|
|
|
Performance of models on the MasakhaPOS downstream task. |
|
|
|
| Model | Test Performance | |
|
|---|---| |
|
| **Multilingual Models** | | |
|
| AfroLM | 83.8 | |
|
| AfriBERTa | 82.5 | |
|
| AfroXLMR-base | 82.7 | |
|
| AfroXLMR-large | 83.0 | |
|
| **Monolingual Models** | | |
|
| NCHLT TSN RoBERTa | 82.3 | |
|
| PuoBERTa | **83.4** | |
|
| PuoBERTa+JW300 | 84.1 | |
|
|
|
Downstream POS model π€ [https://huggingface.co/dsfsi/PuoBERTa-POS](https://huggingface.co/dsfsi/PuoBERTa-POS) |
|
|
|
### MasakhaNER |
|
|
|
Performance of models on the MasakhaNER downstream task. |
|
|
|
| Model | Test Performance (f1 score) | |
|
|---|---| |
|
| **Multilingual Models** | | |
|
| AfriBERTa | 83.2 | |
|
| AfroXLMR-base | 87.7 | |
|
| AfroXLMR-large | 89.4 | |
|
| **Monolingual Models** | | |
|
| NCHLT TSN RoBERTa | 74.2 | |
|
| PuoBERTa | **78.2** | |
|
| PuoBERTa+JW300 | 80.2 | |
|
|
|
Downstream NER model π€ [https://huggingface.co/dsfsi/PuoBERTa-NER](https://huggingface.co/dsfsi/PuoBERTa-NER) |
|
|
|
## Pre-Training Dataset |
|
|
|
We used the PuoData dataset, a rich source of Setswana text, ensuring that our model is well-trained and culturally attuned. |
|
|
|
[Github](https://github.com/dsfsi/PuoData), π€ [https://huggingface.co/datasets/dsfsi/PuoData](https://huggingface.co/datasets/dsfsi/PuoData) |
|
|
|
## Citation Information |
|
|
|
Bibtex Reference |
|
|
|
``` |
|
@inproceedings{marivate2023puoberta, |
|
title = {PuoBERTa: Training and evaluation of a curated language model for Setswana}, |
|
author = {Vukosi Marivate and Moseli Mots'Oehli and Valencia Wagner and Richard Lastrucci and Isheanesu Dzingirai}, |
|
year = {2023}, |
|
booktitle= {Artificial Intelligence Research. SACAIR 2023. Communications in Computer and Information Science}, |
|
url= {https://link.springer.com/chapter/10.1007/978-3-031-49002-6_17}, |
|
keywords = {NLP}, |
|
preprint_url = {https://arxiv.org/abs/2310.09141}, |
|
dataset_url = {https://github.com/dsfsi/PuoBERTa}, |
|
software_url = {https://huggingface.co/dsfsi/PuoBERTa} |
|
} |
|
``` |
|
|
|
## Contributing |
|
|
|
Your contributions are welcome! Feel free to improve the model. |
|
|
|
## Model Card Authors |
|
|
|
Vukosi Marivate |
|
|
|
## Model Card Contact |
|
|
|
For more details, reach out or check our [website](https://dsfsi.github.io/). |
|
|
|
Email: vukosi.marivate@cs.up.ac.za |
|
|
|
**Enjoy exploring Setswana through AI!** |