|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flan-t5-s |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flan-t5-s |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2736 |
|
- Rouge1: 40.152 |
|
- Rouge2: 15.8816 |
|
- Rougel: 33.4399 |
|
- Rougelsum: 35.9029 |
|
- Gen Len: 19.886 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 0.347 | 1.0 | 2307 | 0.2918 | 38.3203 | 14.7065 | 31.7739 | 34.536 | 19.904 | |
|
| 0.2765 | 2.0 | 4615 | 0.2817 | 38.9417 | 15.3147 | 32.5082 | 35.1789 | 19.884 | |
|
| 0.2683 | 3.0 | 6922 | 0.2776 | 39.3458 | 15.3133 | 32.7661 | 35.2993 | 19.878 | |
|
| 0.2635 | 4.0 | 9230 | 0.2751 | 39.7671 | 15.7051 | 33.1173 | 35.6438 | 19.884 | |
|
| 0.2611 | 5.0 | 11537 | 0.2738 | 39.8607 | 15.5855 | 33.1643 | 35.6319 | 19.882 | |
|
| 0.2592 | 6.0 | 13842 | 0.2736 | 40.152 | 15.8816 | 33.4399 | 35.9029 | 19.886 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.15.2 |
|
|