dtthanh's picture
Update README.md
bba1c92
---
library_name: peft
license: cc-by-sa-4.0
language:
- vi
---
### Adapter info
-
This is an Lora adapter using dataset contains only 360 Vietnamese sentences and the "text" column in a format like:
-
```python
> \<s\>\[INST\] "Bạn bè có phúc cùng chia."\[\/INST\] Bạn bè có phúc cùng chia. Có họa trốn sạch chạy đi phương nào? Tay trắng làm nên… mấy chục ngàn bạc nợ. \<\/s\>
or
> \<s\>\[INST\] Ai bảo chăn trâu là khổ. \[\/INST\] Ai bảo chăn trâu là khổ. Tôi chăn chồng còn khổ hơn trâu. Trâu đi trâu biêt đường về. Chồng đi không biết dường về như trâu. \<\/s\>
## Training procedure
-
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Usage
-
```python
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
model_name = "NousResearch/llama-2-7b-chat-hf"
adapters_name = "dtthanh/llama-2-7b-und-lora-2.7"
print(f"Starting to load the model {model_name} into memory")
m = AutoModelForCausalLM.from_pretrained(
model_name,
# base_model_name_or_path # NousResearch/llama-2-7b-chat-hf
#load_in_4bit=True,
torch_dtype=torch.bfloat16,
device_map={"": 0}
)
m = PeftModel.from_pretrained(m, adapters_name)
m = m.merge_and_unload()
tok = AutoTokenizer.from_pretrained(model_name)
tok.pad_token_id = 18610 # _***
print(f"Successfully loaded the model {model_name} into memory")
- PEFT 0.4.0