h0-1 / README.md
dvitel's picture
Update README.md
91229a3
---
license: apache-2.0
tags:
- CodeGPT-small-py
- hearthstone
metrics:
- bleu
- dvitel/codebleu
- exact_match
- chrf
datasets:
- dvitel/hearthstone
model-index:
- name: h0-1
results:
- task:
type: text-generation
name: Python Code Synthesis
dataset:
type: dvitel/hearthstone
name: HearthStone
split: test
metrics:
- type: exact_match
value: 0.21212121212121213
name: Exact Match
- type: bleu
value: 0.8954467480979604
name: BLEU
- type: dvitel/codebleu
value: 0.6976253554171774
name: CodeBLEU
- type: chrf
value: 91.42413429212283
name: chrF
---
# h0-1
This model is a fine-tuned version of [microsoft/CodeGPT-small-py](https://huggingface.co/microsoft/CodeGPT-small-py) on [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset.
[GitHub repo](https://github.com/dvitel/nlp-sem-parsing/blob/master/h0-1.py).
It achieves the following results on the evaluation set:
- Loss: 0.3622
- Exact Match: 0.1970
- Bleu: 0.9193
- Codebleu: 0.7686
- Chrf: 93.5686
## Model description
CodeGPT-small-py fine-tuned on HearthStone dataset for 200 epochs
## Intended uses & limitations
HearthStone card code synthesis.
## Training and evaluation data
See split of [hearthstone](https://huggingface.co/datasets/dvitel/hearthstone) dataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Chrf |
|:-------------:|:------:|:-----:|:---------------:|:-----------:|:------:|:--------:|:-------:|
| 0.2482 | 11.94 | 1600 | 0.2828 | 0.1364 | 0.9012 | 0.7012 | 92.2247 |
| 0.0203 | 23.88 | 3200 | 0.2968 | 0.1970 | 0.9114 | 0.7298 | 93.0236 |
| 0.0082 | 35.82 | 4800 | 0.3049 | 0.1970 | 0.9125 | 0.7480 | 93.1997 |
| 0.0049 | 47.76 | 6400 | 0.3190 | 0.1818 | 0.9125 | 0.7526 | 93.0967 |
| 0.0038 | 59.7 | 8000 | 0.3289 | 0.1818 | 0.9117 | 0.7348 | 93.1293 |
| 0.0024 | 71.64 | 9600 | 0.3358 | 0.1970 | 0.9142 | 0.7555 | 93.0747 |
| 0.0022 | 83.58 | 11200 | 0.3379 | 0.1970 | 0.9164 | 0.7642 | 93.2931 |
| 0.0013 | 95.52 | 12800 | 0.3444 | 0.2121 | 0.9189 | 0.7700 | 93.4456 |
| 0.0009 | 107.46 | 14400 | 0.3408 | 0.1970 | 0.9188 | 0.7655 | 93.4808 |
| 0.0006 | 119.4 | 16000 | 0.3522 | 0.1970 | 0.9177 | 0.7510 | 93.4061 |
| 0.0003 | 131.34 | 17600 | 0.3589 | 0.2121 | 0.9178 | 0.7614 | 93.3980 |
| 0.0002 | 143.28 | 19200 | 0.3562 | 0.2121 | 0.9179 | 0.7634 | 93.5130 |
| 0.0002 | 155.22 | 20800 | 0.3624 | 0.1970 | 0.9208 | 0.7699 | 93.6707 |
| 0.0001 | 167.16 | 22400 | 0.3608 | 0.1970 | 0.9193 | 0.7703 | 93.6082 |
| 0.0001 | 179.1 | 24000 | 0.3620 | 0.1970 | 0.9190 | 0.7667 | 93.5154 |
| 0.0001 | 191.04 | 25600 | 0.3622 | 0.1970 | 0.9193 | 0.7686 | 93.5686 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1