deberta-base-CoLA
This model is a fine-tuned version of microsoft/deberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1655
- Accuracy: 0.8482
- F1: 0.8961
- Roc Auc: 0.8987
- Mcc: 0.6288
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | Mcc |
---|---|---|---|---|---|---|---|
0.5266 | 1.0 | 535 | 0.4138 | 0.8159 | 0.8698 | 0.8627 | 0.5576 |
0.3523 | 2.0 | 1070 | 0.3852 | 0.8387 | 0.8880 | 0.9041 | 0.6070 |
0.2479 | 3.0 | 1605 | 0.3981 | 0.8482 | 0.8901 | 0.9120 | 0.6447 |
0.1712 | 4.0 | 2140 | 0.4732 | 0.8558 | 0.9008 | 0.9160 | 0.6486 |
0.1354 | 5.0 | 2675 | 0.7181 | 0.8463 | 0.8938 | 0.9024 | 0.6250 |
0.0876 | 6.0 | 3210 | 0.8453 | 0.8520 | 0.8992 | 0.9123 | 0.6385 |
0.0682 | 7.0 | 3745 | 1.0282 | 0.8444 | 0.8938 | 0.9061 | 0.6189 |
0.0431 | 8.0 | 4280 | 1.1114 | 0.8463 | 0.8960 | 0.9010 | 0.6239 |
0.0323 | 9.0 | 4815 | 1.1663 | 0.8501 | 0.8970 | 0.8967 | 0.6340 |
0.0163 | 10.0 | 5350 | 1.1655 | 0.8482 | 0.8961 | 0.8987 | 0.6288 |
Framework versions
- Transformers 4.11.0
- Pytorch 1.9.0+cu102
- Datasets 1.12.1
- Tokenizers 0.10.3
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.