metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
base_model:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
model-index:
- name: dzakwan-MoE-4x7b-Beta
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 44.43
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.72
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.81
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.11
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 23.42
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dzakwan/dzakwan-MoE-4x7b-Beta
name: Open LLM Leaderboard
dzakwan-MoE-4x7b-Beta
dzakwan-MoE-4x7b-Beta is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- mlabonne/AlphaMonarch-7B
- beowolx/CodeNinja-1.0-OpenChat-7B
- SanjiWatsuki/Kunoichi-DPO-v2-7B
- mlabonne/NeuralDaredevil-7B
🧩 Configuration
base_model: mlabonne/AlphaMonarch-7B
experts:
- source_model: mlabonne/AlphaMonarch-7B
positive_prompts:
- "chat"
- "assistant"
- "tell me"
- "explain"
- "I want"
- source_model: beowolx/CodeNinja-1.0-OpenChat-7B
positive_prompts:
- "code"
- "python"
- "javascript"
- "programming"
- "algorithm"
- source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B
positive_prompts:
- "storywriting"
- "write"
- "scene"
- "story"
- "character"
- source_model: mlabonne/NeuralDaredevil-7B
positive_prompts:
- "reason"
- "math"
- "mathematics"
- "solve"
- "count"
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "dzakwan/dzakwan-MoE-4x7b-Beta"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 20.59 |
IFEval (0-Shot) | 44.43 |
BBH (3-Shot) | 32.07 |
MATH Lvl 5 (4-Shot) | 6.72 |
GPQA (0-shot) | 4.81 |
MuSR (0-shot) | 12.11 |
MMLU-PRO (5-shot) | 23.42 |