Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 311330e8a1d55a86_train_data.json
  ds_type: json
  field: issue
  path: /workspace/input_data/311330e8a1d55a86_train_data.json
  type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: dzanbek/b6618d56-6c88-4033-ade8-8135764c1751
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/311330e8a1d55a86_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2028
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b6618d56-6c88-4033-ade8-8135764c1751
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b6618d56-6c88-4033-ade8-8135764c1751
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

b6618d56-6c88-4033-ade8-8135764c1751

This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.7649

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
11.7643 0.0050 1 11.7756
11.7739 0.0202 4 11.7754
11.7766 0.0403 8 11.7746
11.7763 0.0605 12 11.7733
11.7657 0.0806 16 11.7718
11.7821 0.1008 20 11.7703
11.7707 0.1209 24 11.7689
11.7642 0.1411 28 11.7676
11.7767 0.1612 32 11.7665
11.7722 0.1814 36 11.7657
11.7692 0.2015 40 11.7652
11.7605 0.2217 44 11.7650
11.7582 0.2418 48 11.7649

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for dzanbek/b6618d56-6c88-4033-ade8-8135764c1751

Adapter
(95)
this model