xShadow's picture
Update README.md
ea10497 verified
metadata
license: cc-by-nc-4.0

Model for "GeoLangBind", is still in development, not the final version

Model card for GeoLB-ViT-B-16-SigLIP

GeoLangBind: Unifying Earth Observation Modalities with Vision-Language Foundation Models

Details are coming soon.

Model Details

  • Model Type: Contrastive Image-Text, Zero-Shot Image Classification.
  • Dataset: Earth observation image-text datasets
  • Papers:
    • GeoLangBind: Unifying Earth Observation Modalities with Vision-Language Foundation Models

Model Usage


Install the geolb_open_clip package first: https://github.com/ShadowXZT/geolb_open_clip.git


With OpenCLIP

import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8

model, preprocess = create_model_from_pretrained('hf-hub:XShadow/GeoLB-ViT-B-16-SigLIP')
tokenizer = get_tokenizer('hf-hub:XShadow/GeoLB-ViT-B-16-SigLIP')

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)

labels_list = ["a dog", "a cat", "a donut", "a beignet"]
text = tokenizer(labels_list, context_length=model.context_length)

with torch.no_grad(), torch.cuda.amp.autocast():
    image_features = model.encode_image(image)
    text_features = model.encode_text(text)
    image_features = F.normalize(image_features, dim=-1)
    text_features = F.normalize(text_features, dim=-1)

    text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)

zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]]))
print("Label probabilities: ", zipped_list)

With timm (for image embeddings)

from urllib.request import urlopen
from PIL import Image
import timm

image = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'dofa_vit_base_patch16_siglip_224',
    pretrained=True,
    num_classes=0,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(image).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

Citation