edmundchan70's picture
End of training
917933f verified
metadata
language:
  - zh
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - edmundchan70/Cantonese_fine_tune
metrics:
  - wer
model-index:
  - name: Whisper Small fine tune-Edmund-0818
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Preach_speech_finetuning
          type: edmundchan70/Cantonese_fine_tune
          config: default
          split: train
          args: 'config: chinese, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 30.476190476190478

Whisper Small fine tune-Edmund-0818

This model is a fine-tuned version of openai/whisper-small on the Preach_speech_finetuning dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1966
  • Wer: 30.4762

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1.25e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 1.0 156 0.1196 17.1429
No log 2.0 312 0.1553 24.6032
No log 3.0 468 0.1655 26.5079
0.0806 4.0 624 0.1820 29.5238
0.0806 5.0 780 0.1792 30.1587
0.0806 6.0 936 0.1998 31.5873
0.0131 7.0 1092 0.1954 31.2698
0.0131 8.0 1248 0.1923 30.6349
0.0131 9.0 1404 0.1905 31.2698
0.0016 10.0 1560 0.1954 31.2698
0.0016 11.0 1716 0.1931 31.1111
0.0016 12.0 1872 0.1953 30.4762
0.0005 13.0 2028 0.1960 30.6349
0.0005 14.0 2184 0.1964 30.6349
0.0005 15.0 2340 0.1966 30.4762

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1