Model roberta_bne_sentiment_analysis_es
A finetuned model for Sentiment analysis in Spanish
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container, The base model is RoBERTa-base-bne which is a RoBERTa base model and has been pre-trained using the largest Spanish corpus known to date, with a total of 570GB. It was trained by The National Library of Spain (Biblioteca Nacional de España)
RoBERTa BNE Citation Check out the paper for all the details: https://arxiv.org/abs/2107.07253
@article{gutierrezfandino2022,
author = {Asier Gutiérrez-Fandiño and Jordi Armengol-Estapé and Marc Pàmies and Joan Llop-Palao and Joaquin Silveira-Ocampo and Casimiro Pio Carrino and Carme Armentano-Oller and Carlos Rodriguez-Penagos and Aitor Gonzalez-Agirre and Marta Villegas},
title = {MarIA: Spanish Language Models},
journal = {Procesamiento del Lenguaje Natural},
volume = {68},
number = {0},
year = {2022},
issn = {1989-7553},
url = {http://journal.sepln.org/sepln/ojs/ojs/index.php/pln/article/view/6405},
pages = {39--60}
}
Dataset
The dataset is a collection of movie reviews in Spanish, about 50,000 reviews. The dataset is balanced and provides every review in english, in spanish and the label in both languages.
Sizes of datasets:
- Train dataset: 42,500
- Validation dataset: 3,750
- Test dataset: 3,750
Intended uses & limitations
This model is intented for Sentiment Analysis for spanish corpus and finetuned specially for movie reviews but it can be applied to other kind of reviews.
Hyperparameters
{
"epochs": "4",
"train_batch_size": "32",
"eval_batch_size": "8",
"fp16": "true",
"learning_rate": "3e-05",
"model_name": "\"PlanTL-GOB-ES/roberta-base-bne\"",
"sagemaker_container_log_level": "20",
"sagemaker_program": "\"train.py\"",
}
Evaluation results
Accuracy = 0.9106666666666666
F1 Score = 0.9090909090909091
Precision = 0.9063852813852814
Recall = 0.9118127381600436
Test results
Model in action
Usage for Sentiment Analysis
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("edumunozsala/roberta_bne_sentiment_analysis_es")
model = AutoModelForSequenceClassification.from_pretrained("edumunozsala/roberta_bne_sentiment_analysis_es")
text ="Se trata de una película interesante, con un solido argumento y un gran interpretación de su actor principal"
input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)
outputs = model(input_ids)
output = outputs.logits.argmax(1)
Created by Eduardo Muñoz/@edumunozsala
- Downloads last month
- 49
Evaluation results
- Accuracy on IMDb Reviews in Spanishself-reported0.911
- F1 Score on IMDb Reviews in Spanishself-reported0.909
- Precision on IMDb Reviews in Spanishself-reported0.906
- Recall on IMDb Reviews in Spanishself-reported0.912