edyfjm07's picture
Training in progress epoch 9
ab9f58c
|
raw
history blame
3.84 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_keras_callback
model-index:
  - name: edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
    results: []

edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1855
  • Train End Logits Accuracy: 0.9286
  • Train Start Logits Accuracy: 0.9475
  • Validation Loss: 1.2809
  • Validation End Logits Accuracy: 0.7994
  • Validation Start Logits Accuracy: 0.7774
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 5474, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
2.3428 0.4160 0.4317 1.3438 0.5611 0.6458 0
1.1526 0.6261 0.6397 1.0597 0.6677 0.7429 1
0.7612 0.7269 0.7647 1.0245 0.7210 0.7806 2
0.5528 0.7836 0.8319 1.2436 0.7116 0.7712 3
0.4667 0.8340 0.8435 1.0705 0.7524 0.7555 4
0.3834 0.8813 0.8687 1.1209 0.7586 0.7712 5
0.3678 0.8634 0.8876 1.2341 0.7618 0.7649 6
0.2555 0.9044 0.9181 1.1561 0.7649 0.8056 7
0.2151 0.9160 0.9328 1.0908 0.7931 0.7994 8
0.1855 0.9286 0.9475 1.2809 0.7994 0.7774 9

Framework versions

  • Transformers 4.41.2
  • TensorFlow 2.15.0
  • Datasets 2.20.0
  • Tokenizers 0.19.1