metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
results: []
edyfjm07/distilbert-base-uncased-QA2-finetuned-squad-es
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1855
- Train End Logits Accuracy: 0.9286
- Train Start Logits Accuracy: 0.9475
- Validation Loss: 1.2809
- Validation End Logits Accuracy: 0.7994
- Validation Start Logits Accuracy: 0.7774
- Epoch: 9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 5474, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
2.3428 | 0.4160 | 0.4317 | 1.3438 | 0.5611 | 0.6458 | 0 |
1.1526 | 0.6261 | 0.6397 | 1.0597 | 0.6677 | 0.7429 | 1 |
0.7612 | 0.7269 | 0.7647 | 1.0245 | 0.7210 | 0.7806 | 2 |
0.5528 | 0.7836 | 0.8319 | 1.2436 | 0.7116 | 0.7712 | 3 |
0.4667 | 0.8340 | 0.8435 | 1.0705 | 0.7524 | 0.7555 | 4 |
0.3834 | 0.8813 | 0.8687 | 1.1209 | 0.7586 | 0.7712 | 5 |
0.3678 | 0.8634 | 0.8876 | 1.2341 | 0.7618 | 0.7649 | 6 |
0.2555 | 0.9044 | 0.9181 | 1.1561 | 0.7649 | 0.8056 | 7 |
0.2151 | 0.9160 | 0.9328 | 1.0908 | 0.7931 | 0.7994 | 8 |
0.1855 | 0.9286 | 0.9475 | 1.2809 | 0.7994 | 0.7774 | 9 |
Framework versions
- Transformers 4.41.2
- TensorFlow 2.15.0
- Datasets 2.20.0
- Tokenizers 0.19.1