Edit model card

sentence-BERTino-v2-mmarco-4m

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. It is a finetuned sentence-BERTino-v2-pt on ~4m mmarco examples.

Use query: and passage: as prefix identifiers for questions and documents respectively.

  • loss: MultipleNegativesRankingLoss
  • infrastructure: A100 80GB

If you find this project useful, consider supporting its development: Buy me a coffee

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer

sentences = [
  "query: Questo è un esempio di frase",
  "passage: Questo è un ulteriore esempio"
]

model = SentenceTransformer('efederici/sentence-BERTino-v2-mmarco-4m')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this:

  1. pass your input through the transformer model
  2. apply the right pooling-operation on-top of the contextualized word embeddings
from transformers import AutoTokenizer, AutoModel
import torch

def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0]
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = [
  "query: Questo è un esempio di frase",
  "passage: Questo è un ulteriore esempio"
]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m')
model = AutoModel.from_pretrained('efederici/sentence-BERTino-v2-mmarco-4m')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Downloads last month
44
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.