#This model is designed to identify and classify text into number of categories:
It leverages advanced Natural Language Processing (NLP) techniques, specifically sentiment analysis, to determine the overall attitude or opinion expressed within a piece of text. By combining this with a dedicated dataset focusing on identifying lies and fakes, it aims to accurately predict whether a given statement is true or false.
[
[
{
"label": "half-true",
"score": 0.21052952110767365
},
{
"label": "mostly-true",
"score": 0.19538265466690063
},
{
"label": "false",
"score": 0.1879868507385254
},
{
"label": "barely-true",
"score": 0.16795198619365692
},
{
"label": "true",
"score": 0.1583855301141739
},
{
"label": "pants-fire",
"score": 0.0797634944319725
}
]
]
Model Trained Using AutoTrain
- Problem type: Text Classification
Validation Metrics
loss: 1.757171869277954
f1_macro: 0.05706191825171995
f1_micro: 0.20654296875
f1_weighted: 0.07071442798968029
precision_macro: 0.034423828125
precision_micro: 0.20654296875
precision_weighted: 0.04265999794006348
recall_macro: 0.16666666666666666
recall_micro: 0.20654296875
recall_weighted: 0.20654296875
accuracy: 0.20654296875
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.