Eloghosa Ikponmwoba
commited on
Commit
•
7cdf2b2
1
Parent(s):
50b9ff0
third trained model upload
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v0.zip +2 -2
- ppo-LunarLander-v0/data +5 -5
- ppo-LunarLander-v0/policy.optimizer.pth +1 -1
- ppo-LunarLander-v0/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 275.76 +/- 26.02
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651694346.247132, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Mfbwp6Aq6g5QSOPH5rDLnXdK4XxkqtwAAgD8AAIA/AOkuvWe9bz4kths+xkXPvlHWsz3cnR89AAAAAAAAAAAaDAu9Hzb0uya3TDyhU3Q8Gj9avcumTT0AAIA/AACAP037WL2PXie6rsSUujtpGLYTuoE6T0mrOQAAgD8AAIA/TRb2Pa63mLqCtg28wUU7OYwBDbulvx86AAAAAAAAAABmXAs8KeA/unLBVDe+OHky9hdYuh2gdLYAAIA/AACAP81xQT1Ij6y6ykQOun6KnTRf5EA6zeIiOQAAgD8AAIA/ZjQfvFKI9Lv6iwI++eepvhPNUz1m0EO/AAAAAAAAgD/N0Gk81zNduRo/mTT3U+cuJXvZOmiRgLMAAIA/AACAP2a2frz2XBa6g5fBNqawbjLW9Kk72DPjtQAAgD8AAIA/Wr4HPmlYdz+25WY+eT0Gv0ozmz4NEzw+AAAAAAAAAAAm2Yy9rkGBuoLODbbiN8WwHOHutrapKDUAAIA/AACAP4DYNz1w+O8+UIQoPZwg2L6NqnE9WbG3vAAAAAAAAAAAs9hjve5bmj2DjFY9EXSuvrHGyrvNBhG9AAAAAAAAAAAz7Ow9mAd8PzrzQD4qRw6/y0VfPpaMVz0AAAAAAAAAAE10ZL3DeXC6KJLdNkrDMTLvhq+5MIsAtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsmMjEG8PcUCUhpRSlIwBbJRNTgGMAXSUR0Cr+kVZTyavdX2UKGgGaAloD0MIDDohdFBYcUCUhpRSlGgVS89oFkdAq/qIJiRW93V9lChoBmgJaA9DCDYBhuXPpXJAlIaUUpRoFUvfaBZHQKv6wy9EkSp1fZQoaAZoCWgPQwh/3enO0wdzQJSGlFKUaBVLzmgWR0Cr+vzC1qnFdX2UKGgGaAloD0MIvw0xXvMQbkCUhpRSlGgVTQEBaBZHQKv6+5tFa0R1fZQoaAZoCWgPQwjOjlTfeaBzQJSGlFKUaBVNDwFoFkdAq/sgVuaWonV9lChoBmgJaA9DCKorn+U5mnBAlIaUUpRoFU0QAWgWR0Cr+z/PomojdX2UKGgGaAloD0MIr8+c9emDcECUhpRSlGgVS9toFkdAq/tJ22XsxHV9lChoBmgJaA9DCAMLYMpAE3JAlIaUUpRoFUvXaBZHQKv7mH8jzI51fZQoaAZoCWgPQwgv205b499xQJSGlFKUaBVL5mgWR0Cr/Bw1R+BpdX2UKGgGaAloD0MIpMUZw5ykcUCUhpRSlGgVS+9oFkdAq/wmX1J173V9lChoBmgJaA9DCBMn9zuUKnFAlIaUUpRoFUvnaBZHQKv8OfI0ZWJ1fZQoaAZoCWgPQwj/JD53gu1yQJSGlFKUaBVL0mgWR0Cr/GQIUrTZdX2UKGgGaAloD0MI+oBAZxIcc0CUhpRSlGgVS7poFkdAq/xr8Jlar3V9lChoBmgJaA9DCGNkyRzLLHJAlIaUUpRoFUveaBZHQKv8nLxqfvp1fZQoaAZoCWgPQwhUjPM3IYZxQJSGlFKUaBVL4mgWR0Cr/NkTxoZidX2UKGgGaAloD0MIXI/C9ajlcECUhpRSlGgVS/FoFkdAq/zpX+2mYXV9lChoBmgJaA9DCIuLo3ITwXJAlIaUUpRoFUvOaBZHQKv9G8g6ltV1fZQoaAZoCWgPQwi4QILiR19yQJSGlFKUaBVL0GgWR0Cr/VOI68xsdX2UKGgGaAloD0MIoYSZtn/3cUCUhpRSlGgVS8JoFkdAq/1piNKh+XV9lChoBmgJaA9DCI85z9iXYHJAlIaUUpRoFU0BAWgWR0Cr/XrDqGDddX2UKGgGaAloD0MIzEQRUvdZc0CUhpRSlGgVS+toFkdAq/3CjJuEVXV9lChoBmgJaA9DCGjKTj9o93FAlIaUUpRoFUvfaBZHQKv9xqUu+RJ1fZQoaAZoCWgPQwjPhvwzwwdzQJSGlFKUaBVL2WgWR0Cr/gmZ/kNndX2UKGgGaAloD0MIf73CgvvncECUhpRSlGgVS8poFkdAq/5wjbBXS3V9lChoBmgJaA9DCOyFAraD03BAlIaUUpRoFUvDaBZHQKv+nXnyNGV1fZQoaAZoCWgPQwgNx/MZ0JluQJSGlFKUaBVL6WgWR0Cr/sqR2bG4dX2UKGgGaAloD0MImKQyxdzocUCUhpRSlGgVS/BoFkdAq/8AVEd/8XV9lChoBmgJaA9DCO888Zwtm25AlIaUUpRoFUvNaBZHQKv+/r+Haex1fZQoaAZoCWgPQwibrie6boNxQJSGlFKUaBVL4mgWR0Cr/wsBZIQOdX2UKGgGaAloD0MIZ/D3ixk/ckCUhpRSlGgVS+BoFkdAq/+ICMglnnV9lChoBmgJaA9DCDXR56OM9XBAlIaUUpRoFUvUaBZHQKv/nkPMB6t1fZQoaAZoCWgPQwhqNLkYA55yQJSGlFKUaBVL9mgWR0Cr/7xyOq//dX2UKGgGaAloD0MIixcLQ+S/cUCUhpRSlGgVS9loFkdAq//qAOJ+D3V9lChoBmgJaA9DCO+QYoDEt3FAlIaUUpRoFUviaBZHQKwAL8XN1Qt1fZQoaAZoCWgPQwhmSutvCQN0QJSGlFKUaBVL8WgWR0CsAEtlZowmdX2UKGgGaAloD0MINNdppOXNcECUhpRSlGgVS+BoFkdArAB57E5yVHV9lChoBmgJaA9DCBVSflJtznFAlIaUUpRoFUv9aBZHQKwA2XVsk6d1fZQoaAZoCWgPQwg2I4PcxeJxQJSGlFKUaBVL6GgWR0CsEzx5cC5mdX2UKGgGaAloD0MI54pSQvCrcUCUhpRSlGgVS9hoFkdArBNw/FBIF3V9lChoBmgJaA9DCAK7mjxlXUFAlIaUUpRoFUutaBZHQKwTf6F/QSl1fZQoaAZoCWgPQwgH0sWmVfRxQJSGlFKUaBVL42gWR0CsE78IAwPAdX2UKGgGaAloD0MI0hvuI7fhckCUhpRSlGgVS+5oFkdArBQKwD/2kHV9lChoBmgJaA9DCFDj3vxGKnBAlIaUUpRoFUvlaBZHQKwUI3kxREZ1fZQoaAZoCWgPQwhrLGFtTL9zQJSGlFKUaBVL82gWR0CsFExVp9JCdX2UKGgGaAloD0MIgufew6XvckCUhpRSlGgVS+1oFkdArBTlY0VJtnV9lChoBmgJaA9DCAwfEVMirHBAlIaUUpRoFUvNaBZHQKwVGVeKKpF1fZQoaAZoCWgPQwg2kZkLXJNwQJSGlFKUaBVL/WgWR0CsFUVzIV/MdX2UKGgGaAloD0MIIAn7dpKeckCUhpRSlGgVS/BoFkdArBVLZUT+N3V9lChoBmgJaA9DCD7nbteL23BAlIaUUpRoFUvnaBZHQKwV2Cgbp/x1fZQoaAZoCWgPQwjzr+WVa3dyQJSGlFKUaBVL0GgWR0CsFgGJWNm2dX2UKGgGaAloD0MI409UNqx1ckCUhpRSlGgVS8toFkdArBYxrBTGYXV9lChoBmgJaA9DCFABMJ5BjnBAlIaUUpRoFUvOaBZHQKwWVON5t3x1fZQoaAZoCWgPQwjmkqrt5o1yQJSGlFKUaBVL+2gWR0CsFp+NDMNddX2UKGgGaAloD0MIghspW+QCckCUhpRSlGgVTTsBaBZHQKwW6c2itaJ1fZQoaAZoCWgPQwhWKqioep9xQJSGlFKUaBVL6WgWR0CsFwmJ3xFzdX2UKGgGaAloD0MI4nX9gp1ScECUhpRSlGgVS+BoFkdArBde0JF9a3V9lChoBmgJaA9DCAZKCiyAdHFAlIaUUpRoFUvVaBZHQKwXZ95yEL91fZQoaAZoCWgPQwg6It+l1MlxQJSGlFKUaBVL7WgWR0CsF3LzXjEOdX2UKGgGaAloD0MI6gd1kUJscECUhpRSlGgVS8loFkdArBfbXYlIE3V9lChoBmgJaA9DCPmiPV5IXXJAlIaUUpRoFUvIaBZHQKwYBaC+UQl1fZQoaAZoCWgPQwiCdLFpZbRxQJSGlFKUaBVN2QFoFkdArBg6InBtUHV9lChoBmgJaA9DCLwH6L4cLXJAlIaUUpRoFUvZaBZHQKwYYpZwGW51fZQoaAZoCWgPQwhqaW6FsChwQJSGlFKUaBVL4mgWR0CsGIN78ejmdX2UKGgGaAloD0MI4Nv0Z/+8cUCUhpRSlGgVS8ZoFkdArBiea2F36nV9lChoBmgJaA9DCM/ZAkJrHG5AlIaUUpRoFUvNaBZHQKwY/sP8Q7N1fZQoaAZoCWgPQwgzNJ4IIr1wQJSGlFKUaBVL0GgWR0CsGWfPPcBVdX2UKGgGaAloD0MIDtqrj8fgcUCUhpRSlGgVS/JoFkdArBmdCZ4Oc3V9lChoBmgJaA9DCCklBKtq2WVAlIaUUpRoFU3oA2gWR0CsGftSAH3UdX2UKGgGaAloD0MIK76h8BkocUCUhpRSlGgVS8RoFkdArBoJKraM73V9lChoBmgJaA9DCKPmq+Qj+nBAlIaUUpRoFUvmaBZHQKwaGokRjBl1fZQoaAZoCWgPQwhTW+ogb+tzQJSGlFKUaBVL5mgWR0CsGmD3VTaTdX2UKGgGaAloD0MIwAXZsvzDcUCUhpRSlGgVS+poFkdArBp19nbqQnV9lChoBmgJaA9DCNHJUuv9wnBAlIaUUpRoFUvxaBZHQKwa96F/QSl1fZQoaAZoCWgPQwjNPo9RnkJwQJSGlFKUaBVL3mgWR0CsGxehf0EpdX2UKGgGaAloD0MIoBaDhyl5ckCUhpRSlGgVS9JoFkdArBsc1fmcOXV9lChoBmgJaA9DCLGnHf4a8WxAlIaUUpRoFU1GAWgWR0CsGzM4ku6FdX2UKGgGaAloD0MI0nMLXYnYb0CUhpRSlGgVS89oFkdArBs0zKs+3nV9lChoBmgJaA9DCBfvx+0XQW5AlIaUUpRoFUvfaBZHQKwbe05U96l1fZQoaAZoCWgPQwiNQ/0u7FtyQJSGlFKUaBVNFQFoFkdArBuQCdSVGHV9lChoBmgJaA9DCA3k2eXbjnBAlIaUUpRoFUvaaBZHQKwbwOLBKth1fZQoaAZoCWgPQwhwBn+/2BFyQJSGlFKUaBVLwGgWR0CsG/jgydnTdX2UKGgGaAloD0MIuvjbnmBhcECUhpRSlGgVS+1oFkdArBxS5Etuk3V9lChoBmgJaA9DCOj4aHGGmnNAlIaUUpRoFUvVaBZHQKwclZTQ3P11fZQoaAZoCWgPQwiZ1NAGIFlzQJSGlFKUaBVL2mgWR0CsHSbqhUR4dX2UKGgGaAloD0MIUYaqmEoPcUCUhpRSlGgVS+doFkdArB1AsK9f1HV9lChoBmgJaA9DCN+/eXFi929AlIaUUpRoFUv+aBZHQKwdQNuLrHF1fZQoaAZoCWgPQwi4IcZr3ixwQJSGlFKUaBVNFAFoFkdArB1sXBP9DXV9lChoBmgJaA9DCAAC1qrdW3FAlIaUUpRoFUvUaBZHQKwdwjs2NvR1fZQoaAZoCWgPQwg6P8VxoMlxQJSGlFKUaBVL42gWR0CsHdKuKXOXdX2UKGgGaAloD0MIJAwDlpzhckCUhpRSlGgVS+JoFkdArB4PgWJrL3V9lChoBmgJaA9DCNZSQNo/nnFAlIaUUpRoFUvQaBZHQKweO1NQCS11fZQoaAZoCWgPQwikb9I06ANwQJSGlFKUaBVL3WgWR0CsHk+XJHRUdX2UKGgGaAloD0MI6brwg7OccUCUhpRSlGgVS/5oFkdArB5oj4YaYXV9lChoBmgJaA9DCCy4H/CASnJAlIaUUpRoFU0PAWgWR0CsHoOIqLCOdX2UKGgGaAloD0MIEJVGzGzMcUCUhpRSlGgVS9loFkdArB7J5eJHiHV9lChoBmgJaA9DCNDtJY2RbXBAlIaUUpRoFUvQaBZHQKwfCkrwvxp1fZQoaAZoCWgPQwiYE7TJ4VRxQJSGlFKUaBVNCQFoFkdArB8mZ5Rj0HV9lChoBmgJaA9DCLTmx1+adnBAlIaUUpRoFUvnaBZHQKwgIWZ7Xxx1fZQoaAZoCWgPQwiJCtXNReVzQJSGlFKUaBVL5mgWR0CsIDTYdyT7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5f04092440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5f040924d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5f04092560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5f040925f0>", "_build": "<function ActorCriticPolicy._build at 0x7f5f04092680>", "forward": "<function ActorCriticPolicy.forward at 0x7f5f04092710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5f040927a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5f04092830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5f040928c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5f04092950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5f040929e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f04069060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651696362.0631945, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAODZSj45FA4/uia1vQ3Vs77Sw9w9FoOZvQAAAAAAAAAA8ywTvvI4hT8WgLq8gY/bvvLUmL4+Ngs+AAAAAAAAAABNNrU95mWfPiKKG72FwJq+kzMEPhqFiL0AAAAAAAAAAACkEzx71uS6SVMovBf3izyqUyY8K89yvQAAgD8AAIA/IDqQPkH+vj6s1IW+SlfBvnBFgD7+VQ6+AAAAAAAAAAAaag+9ewS1OfrfAze8pE4xw2crvKUAJbYAAIA/AACAP7MBJL3HgWk+7dO/PVK2zr7rlv89Dj59vQAAAAAAAAAAAAlPvUM/IT36+5u9zel/vqUXaDxQzCc9AAAAAAAAAAAz4py9sZ8KPxQiEz5+H9K+zmkcPWS5Dz0AAAAAAAAAAJq06Lx7Zo66mg7SOBxBwzMdD8S6tcnztwAAgD8AAIA/sx6OvoUYYj8mEm69G+Gnvj2uxb4izA0+AAAAAAAAAADmcV8+qwCBPgVsrb4Xiom+JF/ePZv6H74AAAAAAAAAAM0SPb4E36g/dicDv6xzm75DxLu+evrevgAAAAAAAAAAxiqvPhxfMT9DnRu+RxANv/6Glz5SU1C+AAAAAAAAAADma6S9toQfvC7TibvpG4480iGFvXroaz0AAIA/AACAP2bmirwsvp8/DN1IvMvQ6b413wa+MuquvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRRMoYhHAbkCUhpRSlIwBbJRL8YwBdJRHQLR2QEyLyc11fZQoaAZoCWgPQwgvbTgszbBxQJSGlFKUaBVL62gWR0C0dkASi/O/dX2UKGgGaAloD0MIZhAf2LGlcECUhpRSlGgVS/doFkdAtHZ6J9AoonV9lChoBmgJaA9DCJXzxd5LRXFAlIaUUpRoFUv9aBZHQLR2kvjfek51fZQoaAZoCWgPQwgC2evdHy9yQJSGlFKUaBVNOQFoFkdAtHbBi8WbgHV9lChoBmgJaA9DCOykviytmnFAlIaUUpRoFUv7aBZHQLR2x1+y7f51fZQoaAZoCWgPQwizz2OUp95zQJSGlFKUaBVL6GgWR0C0dtZu63AmdX2UKGgGaAloD0MIP41781u6ckCUhpRSlGgVS+RoFkdAtHboClrM1XV9lChoBmgJaA9DCDcz+tFwFG9AlIaUUpRoFUviaBZHQLR3EvsJIDp1fZQoaAZoCWgPQwjLg/QUOVhwQJSGlFKUaBVL5WgWR0C0dxJGvwEydX2UKGgGaAloD0MImrLTD+ptcUCUhpRSlGgVS9ZoFkdAtHcsUnG83HV9lChoBmgJaA9DCMUB9Pu+yHFAlIaUUpRoFUvOaBZHQLR3OQk5ZKZ1fZQoaAZoCWgPQwhjuaXVkFhzQJSGlFKUaBVL2mgWR0C0d0kQf6oEdX2UKGgGaAloD0MIyAc9m9VJckCUhpRSlGgVS+JoFkdAtHeK8Hv+fnV9lChoBmgJaA9DCIjX9Qs20HFAlIaUUpRoFUv1aBZHQLR3icE/0NB1fZQoaAZoCWgPQwi/SdOgKAtwQJSGlFKUaBVL5WgWR0C0d5CBGx2TdX2UKGgGaAloD0MI2q7QB4vOcECUhpRSlGgVS/RoFkdAtHej9DQZ43V9lChoBmgJaA9DCNf34SBhFHFAlIaUUpRoFU0fAWgWR0C0d6UMkQf7dX2UKGgGaAloD0MIKQezCfD6cUCUhpRSlGgVS+ZoFkdAtHgXtCzC13V9lChoBmgJaA9DCDYhrTGo4nBAlIaUUpRoFU0GAWgWR0C0eBjslb/wdX2UKGgGaAloD0MIW9B7Y4gzcECUhpRSlGgVTSEBaBZHQLR4K+d9Ujt1fZQoaAZoCWgPQwgE5EuoIP9wQJSGlFKUaBVL7WgWR0C0eDrIYFaCdX2UKGgGaAloD0MIlSnmIKizcECUhpRSlGgVS/toFkdAtHhBSuQp4XV9lChoBmgJaA9DCBoziXpBD29AlIaUUpRoFUv6aBZHQLR4ZFGXokl1fZQoaAZoCWgPQwiLa3wm+wJvQJSGlFKUaBVL6WgWR0C0eHcVDa4+dX2UKGgGaAloD0MIKETAIVQ6ckCUhpRSlGgVS+doFkdAtHiQ8B+4LHV9lChoBmgJaA9DCIhjXdwGanFAlIaUUpRoFUvjaBZHQLR4mFYdQwd1fZQoaAZoCWgPQwjONjemJ0VxQJSGlFKUaBVNKAFoFkdAtHjYDklu33V9lChoBmgJaA9DCCu+ofBZtnFAlIaUUpRoFU0BAWgWR0C0eNeHnEEUdX2UKGgGaAloD0MIfEYiNAKucUCUhpRSlGgVS+5oFkdAtHj4ihWYGHV9lChoBmgJaA9DCM+goX8C23BAlIaUUpRoFU0BAWgWR0C0eTLSZ0CBdX2UKGgGaAloD0MIlfQwtLpQbUCUhpRSlGgVTQMBaBZHQLR5N4b0e2d1fZQoaAZoCWgPQwh/oNy273hyQJSGlFKUaBVNIgFoFkdAtHlMDlo11nV9lChoBmgJaA9DCOUl/5P/BnNAlIaUUpRoFU09AWgWR0C0eXuEqUeNdX2UKGgGaAloD0MI226Cb1r7cUCUhpRSlGgVS+VoFkdAtHl+w8nuzHV9lChoBmgJaA9DCDT1ukUgO3JAlIaUUpRoFUvmaBZHQLR5keqrBCV1fZQoaAZoCWgPQwj4xaUqrSFzQJSGlFKUaBVL52gWR0C0eaIK+i8GdX2UKGgGaAloD0MIkIgpkcRPckCUhpRSlGgVTQ0BaBZHQLR+SofjjrB1fZQoaAZoCWgPQwjidmhYjCZvQJSGlFKUaBVL92gWR0C0foruhK15dX2UKGgGaAloD0MI9vBloohobUCUhpRSlGgVS+xoFkdAtH6VL6DXe3V9lChoBmgJaA9DCKyQ8pPqf3JAlIaUUpRoFU0iAWgWR0C0fp0UoKD1dX2UKGgGaAloD0MI/isrTYpqckCUhpRSlGgVTQ4BaBZHQLR+oCkoF3Z1fZQoaAZoCWgPQwiQvHMogzpwQJSGlFKUaBVL9mgWR0C0fq3SSeRQdX2UKGgGaAloD0MIcVevIqOOcUCUhpRSlGgVS9doFkdAtH68yLyc1HV9lChoBmgJaA9DCFUS2QeZGnNAlIaUUpRoFUvgaBZHQLR+yaQFLWZ1fZQoaAZoCWgPQwi8rfTabF5zQJSGlFKUaBVL7mgWR0C0fvmUr08OdX2UKGgGaAloD0MIXwg5779IcUCUhpRSlGgVS9hoFkdAtH8n8EV32XV9lChoBmgJaA9DCK0XQzmR/nJAlIaUUpRoFUvqaBZHQLR/KuZkTYd1fZQoaAZoCWgPQwgapUv/UkVxQJSGlFKUaBVL1WgWR0C0f1NgWrOrdX2UKGgGaAloD0MIB7R0BVtfckCUhpRSlGgVTQcBaBZHQLR/W7Gecx11fZQoaAZoCWgPQwjxLawbb81vQJSGlFKUaBVL5WgWR0C0f2pIpYs/dX2UKGgGaAloD0MIs5lDUgtFD8CUhpRSlGgVS75oFkdAtH9vlJYkmnV9lChoBmgJaA9DCK4QVmMJPXFAlIaUUpRoFUv2aBZHQLR/q8kD6nB1fZQoaAZoCWgPQwjiAtAoXU1zQJSGlFKUaBVL7GgWR0C0f/T/lyR0dX2UKGgGaAloD0MIYW9iSE7ucECUhpRSlGgVS/JoFkdAtIAT9MsYmHV9lChoBmgJaA9DCNJyoIdajXFAlIaUUpRoFUvzaBZHQLSAJkZ75VR1fZQoaAZoCWgPQwilTkAT4TlyQJSGlFKUaBVL/WgWR0C0gCXAmAskdX2UKGgGaAloD0MIqySyD/J6cUCUhpRSlGgVS+toFkdAtIA5qM3qA3V9lChoBmgJaA9DCNCbilTYBXFAlIaUUpRoFUv1aBZHQLSAOsGgSOB1fZQoaAZoCWgPQwgHmWTkrPdvQJSGlFKUaBVNKwFoFkdAtIBnKzRhMXV9lChoBmgJaA9DCBh9BWkGknFAlIaUUpRoFUvjaBZHQLSAZ/RE4Nt1fZQoaAZoCWgPQwjUCtP3GtJuQJSGlFKUaBVL7WgWR0C0gKriqABldX2UKGgGaAloD0MIYDqt2+AXc0CUhpRSlGgVTQsBaBZHQLSA2Ddgv111fZQoaAZoCWgPQwhXeQJhp5huQJSGlFKUaBVL/WgWR0C0gPBEa2nbdX2UKGgGaAloD0MIJnFWRA06ckCUhpRSlGgVS/loFkdAtIDx4MWoFXV9lChoBmgJaA9DCIUHza77CnBAlIaUUpRoFUv5aBZHQLSBAAc1fmd1fZQoaAZoCWgPQwhV3o5wWj1xQJSGlFKUaBVL1mgWR0C0gQm38XN1dX2UKGgGaAloD0MI5kAPta1QcECUhpRSlGgVTQQBaBZHQLSBFUgSvkl1fZQoaAZoCWgPQwjtRh/zAcxuQJSGlFKUaBVL4GgWR0C0gViZ0CA+dX2UKGgGaAloD0MICK9d2vCGc0CUhpRSlGgVS/1oFkdAtIGwGIKtxXV9lChoBmgJaA9DCHPxtz3BK3BAlIaUUpRoFUvsaBZHQLSBupudf9h1fZQoaAZoCWgPQwjWxtgJr2ZwQJSGlFKUaBVL72gWR0C0gb7lV94NdX2UKGgGaAloD0MIIjfDDfjPckCUhpRSlGgVTQIBaBZHQLSBylNlAeJ1fZQoaAZoCWgPQwhQc/Iik61wQJSGlFKUaBVL2WgWR0C0gcsDr7fpdX2UKGgGaAloD0MI+wPltv2mbkCUhpRSlGgVS+ZoFkdAtIHfCsOoYXV9lChoBmgJaA9DCNeJy/FK2nFAlIaUUpRoFUvVaBZHQLSCPNg0CRx1fZQoaAZoCWgPQwjXM4Rj1l1xQJSGlFKUaBVL/mgWR0C0glRlMAWBdX2UKGgGaAloD0MIC/Dd5k26cECUhpRSlGgVS9xoFkdAtIJmOOsDGXV9lChoBmgJaA9DCJRPj22ZT25AlIaUUpRoFUveaBZHQLSCaHB1s+F1fZQoaAZoCWgPQwgOh6WBn1xxQJSGlFKUaBVL52gWR0C0gpmi1y/9dX2UKGgGaAloD0MIXTRkPIrSckCUhpRSlGgVTQcBaBZHQLSCydLQHA11fZQoaAZoCWgPQwiF61G4HjpuQJSGlFKUaBVL+GgWR0C0gskdJaq0dX2UKGgGaAloD0MI1NFxNXJockCUhpRSlGgVS+BoFkdAtILwJ8fFJnV9lChoBmgJaA9DCC1b64sE7nFAlIaUUpRoFUvXaBZHQLSDQzw+dLB1fZQoaAZoCWgPQwgrUIvBg9hwQJSGlFKUaBVL52gWR0C0g1bh3qzJdX2UKGgGaAloD0MI0sYRa3EZc0CUhpRSlGgVS+doFkdAtINlgZ0jknV9lChoBmgJaA9DCLdB7be2uHFAlIaUUpRoFUv1aBZHQLSDjICEHt51fZQoaAZoCWgPQwhzZyYYDu1wQJSGlFKUaBVNAAFoFkdAtIOkW3z+WHV9lChoBmgJaA9DCB/axwo+JnBAlIaUUpRoFU0IAWgWR0C0g8mpuMuOdX2UKGgGaAloD0MIE0azsv3Kc0CUhpRSlGgVS+VoFkdAtIQWJuVHF3V9lChoBmgJaA9DCFBTy9Y6vHJAlIaUUpRoFUv5aBZHQLSEJog3cYZ1fZQoaAZoCWgPQwiX4T/dwFByQJSGlFKUaBVL9GgWR0C0hC7xNIsidX2UKGgGaAloD0MIZohjXRx1cUCUhpRSlGgVTRwBaBZHQLSETYvnKW91fZQoaAZoCWgPQwjzID1FjrNxQJSGlFKUaBVL72gWR0C0hFTtw71adX2UKGgGaAloD0MIuFz92CSMc0CUhpRSlGgVS+doFkdAtIRyiQDFInV9lChoBmgJaA9DCOaw+47h12tAlIaUUpRoFU16AmgWR0C0hHcRtgrpdX2UKGgGaAloD0MINo/DYP4aTkCUhpRSlGgVS6hoFkdAtISSxPfsNXV9lChoBmgJaA9DCF/QQgIGpHFAlIaUUpRoFUvlaBZHQLSEkhakhzN1fZQoaAZoCWgPQwi4WbxYGDpkQJSGlFKUaBVN6ANoFkdAtIS2wxFiKHV9lChoBmgJaA9DCJYJv9SP1HFAlIaUUpRoFU0eAWgWR0C0hMjmbLEDdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4a93bea3cd477fd48cd7fcae0de834ef26a4addd5f29b5543d87d7c3e18e108
|
3 |
+
size 144015
|
ppo-LunarLander-v0/data
CHANGED
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,7 +69,7 @@
|
|
69 |
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
@@ -79,10 +79,10 @@
|
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651696362.0631945,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAODZSj45FA4/uia1vQ3Vs77Sw9w9FoOZvQAAAAAAAAAA8ywTvvI4hT8WgLq8gY/bvvLUmL4+Ngs+AAAAAAAAAABNNrU95mWfPiKKG72FwJq+kzMEPhqFiL0AAAAAAAAAAACkEzx71uS6SVMovBf3izyqUyY8K89yvQAAgD8AAIA/IDqQPkH+vj6s1IW+SlfBvnBFgD7+VQ6+AAAAAAAAAAAaag+9ewS1OfrfAze8pE4xw2crvKUAJbYAAIA/AACAP7MBJL3HgWk+7dO/PVK2zr7rlv89Dj59vQAAAAAAAAAAAAlPvUM/IT36+5u9zel/vqUXaDxQzCc9AAAAAAAAAAAz4py9sZ8KPxQiEz5+H9K+zmkcPWS5Dz0AAAAAAAAAAJq06Lx7Zo66mg7SOBxBwzMdD8S6tcnztwAAgD8AAIA/sx6OvoUYYj8mEm69G+Gnvj2uxb4izA0+AAAAAAAAAADmcV8+qwCBPgVsrb4Xiom+JF/ePZv6H74AAAAAAAAAAM0SPb4E36g/dicDv6xzm75DxLu+evrevgAAAAAAAAAAxiqvPhxfMT9DnRu+RxANv/6Glz5SU1C+AAAAAAAAAADma6S9toQfvC7TibvpG4480iGFvXroaz0AAIA/AACAP2bmirwsvp8/DN1IvMvQ6b413wa+MuquvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.004885333333333408,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIRRMoYhHAbkCUhpRSlIwBbJRL8YwBdJRHQLR2QEyLyc11fZQoaAZoCWgPQwgvbTgszbBxQJSGlFKUaBVL62gWR0C0dkASi/O/dX2UKGgGaAloD0MIZhAf2LGlcECUhpRSlGgVS/doFkdAtHZ6J9AoonV9lChoBmgJaA9DCJXzxd5LRXFAlIaUUpRoFUv9aBZHQLR2kvjfek51fZQoaAZoCWgPQwgC2evdHy9yQJSGlFKUaBVNOQFoFkdAtHbBi8WbgHV9lChoBmgJaA9DCOykviytmnFAlIaUUpRoFUv7aBZHQLR2x1+y7f51fZQoaAZoCWgPQwizz2OUp95zQJSGlFKUaBVL6GgWR0C0dtZu63AmdX2UKGgGaAloD0MIP41781u6ckCUhpRSlGgVS+RoFkdAtHboClrM1XV9lChoBmgJaA9DCDcz+tFwFG9AlIaUUpRoFUviaBZHQLR3EvsJIDp1fZQoaAZoCWgPQwjLg/QUOVhwQJSGlFKUaBVL5WgWR0C0dxJGvwEydX2UKGgGaAloD0MImrLTD+ptcUCUhpRSlGgVS9ZoFkdAtHcsUnG83HV9lChoBmgJaA9DCMUB9Pu+yHFAlIaUUpRoFUvOaBZHQLR3OQk5ZKZ1fZQoaAZoCWgPQwhjuaXVkFhzQJSGlFKUaBVL2mgWR0C0d0kQf6oEdX2UKGgGaAloD0MIyAc9m9VJckCUhpRSlGgVS+JoFkdAtHeK8Hv+fnV9lChoBmgJaA9DCIjX9Qs20HFAlIaUUpRoFUv1aBZHQLR3icE/0NB1fZQoaAZoCWgPQwi/SdOgKAtwQJSGlFKUaBVL5WgWR0C0d5CBGx2TdX2UKGgGaAloD0MI2q7QB4vOcECUhpRSlGgVS/RoFkdAtHej9DQZ43V9lChoBmgJaA9DCNf34SBhFHFAlIaUUpRoFU0fAWgWR0C0d6UMkQf7dX2UKGgGaAloD0MIKQezCfD6cUCUhpRSlGgVS+ZoFkdAtHgXtCzC13V9lChoBmgJaA9DCDYhrTGo4nBAlIaUUpRoFU0GAWgWR0C0eBjslb/wdX2UKGgGaAloD0MIW9B7Y4gzcECUhpRSlGgVTSEBaBZHQLR4K+d9Ujt1fZQoaAZoCWgPQwgE5EuoIP9wQJSGlFKUaBVL7WgWR0C0eDrIYFaCdX2UKGgGaAloD0MIlSnmIKizcECUhpRSlGgVS/toFkdAtHhBSuQp4XV9lChoBmgJaA9DCBoziXpBD29AlIaUUpRoFUv6aBZHQLR4ZFGXokl1fZQoaAZoCWgPQwiLa3wm+wJvQJSGlFKUaBVL6WgWR0C0eHcVDa4+dX2UKGgGaAloD0MIKETAIVQ6ckCUhpRSlGgVS+doFkdAtHiQ8B+4LHV9lChoBmgJaA9DCIhjXdwGanFAlIaUUpRoFUvjaBZHQLR4mFYdQwd1fZQoaAZoCWgPQwjONjemJ0VxQJSGlFKUaBVNKAFoFkdAtHjYDklu33V9lChoBmgJaA9DCCu+ofBZtnFAlIaUUpRoFU0BAWgWR0C0eNeHnEEUdX2UKGgGaAloD0MIfEYiNAKucUCUhpRSlGgVS+5oFkdAtHj4ihWYGHV9lChoBmgJaA9DCM+goX8C23BAlIaUUpRoFU0BAWgWR0C0eTLSZ0CBdX2UKGgGaAloD0MIlfQwtLpQbUCUhpRSlGgVTQMBaBZHQLR5N4b0e2d1fZQoaAZoCWgPQwh/oNy273hyQJSGlFKUaBVNIgFoFkdAtHlMDlo11nV9lChoBmgJaA9DCOUl/5P/BnNAlIaUUpRoFU09AWgWR0C0eXuEqUeNdX2UKGgGaAloD0MI226Cb1r7cUCUhpRSlGgVS+VoFkdAtHl+w8nuzHV9lChoBmgJaA9DCDT1ukUgO3JAlIaUUpRoFUvmaBZHQLR5keqrBCV1fZQoaAZoCWgPQwj4xaUqrSFzQJSGlFKUaBVL52gWR0C0eaIK+i8GdX2UKGgGaAloD0MIkIgpkcRPckCUhpRSlGgVTQ0BaBZHQLR+SofjjrB1fZQoaAZoCWgPQwjidmhYjCZvQJSGlFKUaBVL92gWR0C0foruhK15dX2UKGgGaAloD0MI9vBloohobUCUhpRSlGgVS+xoFkdAtH6VL6DXe3V9lChoBmgJaA9DCKyQ8pPqf3JAlIaUUpRoFU0iAWgWR0C0fp0UoKD1dX2UKGgGaAloD0MI/isrTYpqckCUhpRSlGgVTQ4BaBZHQLR+oCkoF3Z1fZQoaAZoCWgPQwiQvHMogzpwQJSGlFKUaBVL9mgWR0C0fq3SSeRQdX2UKGgGaAloD0MIcVevIqOOcUCUhpRSlGgVS9doFkdAtH68yLyc1HV9lChoBmgJaA9DCFUS2QeZGnNAlIaUUpRoFUvgaBZHQLR+yaQFLWZ1fZQoaAZoCWgPQwi8rfTabF5zQJSGlFKUaBVL7mgWR0C0fvmUr08OdX2UKGgGaAloD0MIXwg5779IcUCUhpRSlGgVS9hoFkdAtH8n8EV32XV9lChoBmgJaA9DCK0XQzmR/nJAlIaUUpRoFUvqaBZHQLR/KuZkTYd1fZQoaAZoCWgPQwgapUv/UkVxQJSGlFKUaBVL1WgWR0C0f1NgWrOrdX2UKGgGaAloD0MIB7R0BVtfckCUhpRSlGgVTQcBaBZHQLR/W7Gecx11fZQoaAZoCWgPQwjxLawbb81vQJSGlFKUaBVL5WgWR0C0f2pIpYs/dX2UKGgGaAloD0MIs5lDUgtFD8CUhpRSlGgVS75oFkdAtH9vlJYkmnV9lChoBmgJaA9DCK4QVmMJPXFAlIaUUpRoFUv2aBZHQLR/q8kD6nB1fZQoaAZoCWgPQwjiAtAoXU1zQJSGlFKUaBVL7GgWR0C0f/T/lyR0dX2UKGgGaAloD0MIYW9iSE7ucECUhpRSlGgVS/JoFkdAtIAT9MsYmHV9lChoBmgJaA9DCNJyoIdajXFAlIaUUpRoFUvzaBZHQLSAJkZ75VR1fZQoaAZoCWgPQwilTkAT4TlyQJSGlFKUaBVL/WgWR0C0gCXAmAskdX2UKGgGaAloD0MIqySyD/J6cUCUhpRSlGgVS+toFkdAtIA5qM3qA3V9lChoBmgJaA9DCNCbilTYBXFAlIaUUpRoFUv1aBZHQLSAOsGgSOB1fZQoaAZoCWgPQwgHmWTkrPdvQJSGlFKUaBVNKwFoFkdAtIBnKzRhMXV9lChoBmgJaA9DCBh9BWkGknFAlIaUUpRoFUvjaBZHQLSAZ/RE4Nt1fZQoaAZoCWgPQwjUCtP3GtJuQJSGlFKUaBVL7WgWR0C0gKriqABldX2UKGgGaAloD0MIYDqt2+AXc0CUhpRSlGgVTQsBaBZHQLSA2Ddgv111fZQoaAZoCWgPQwhXeQJhp5huQJSGlFKUaBVL/WgWR0C0gPBEa2nbdX2UKGgGaAloD0MIJnFWRA06ckCUhpRSlGgVS/loFkdAtIDx4MWoFXV9lChoBmgJaA9DCIUHza77CnBAlIaUUpRoFUv5aBZHQLSBAAc1fmd1fZQoaAZoCWgPQwhV3o5wWj1xQJSGlFKUaBVL1mgWR0C0gQm38XN1dX2UKGgGaAloD0MI5kAPta1QcECUhpRSlGgVTQQBaBZHQLSBFUgSvkl1fZQoaAZoCWgPQwjtRh/zAcxuQJSGlFKUaBVL4GgWR0C0gViZ0CA+dX2UKGgGaAloD0MICK9d2vCGc0CUhpRSlGgVS/1oFkdAtIGwGIKtxXV9lChoBmgJaA9DCHPxtz3BK3BAlIaUUpRoFUvsaBZHQLSBupudf9h1fZQoaAZoCWgPQwjWxtgJr2ZwQJSGlFKUaBVL72gWR0C0gb7lV94NdX2UKGgGaAloD0MIIjfDDfjPckCUhpRSlGgVTQIBaBZHQLSBylNlAeJ1fZQoaAZoCWgPQwhQc/Iik61wQJSGlFKUaBVL2WgWR0C0gcsDr7fpdX2UKGgGaAloD0MI+wPltv2mbkCUhpRSlGgVS+ZoFkdAtIHfCsOoYXV9lChoBmgJaA9DCNeJy/FK2nFAlIaUUpRoFUvVaBZHQLSCPNg0CRx1fZQoaAZoCWgPQwjXM4Rj1l1xQJSGlFKUaBVL/mgWR0C0glRlMAWBdX2UKGgGaAloD0MIC/Dd5k26cECUhpRSlGgVS9xoFkdAtIJmOOsDGXV9lChoBmgJaA9DCJRPj22ZT25AlIaUUpRoFUveaBZHQLSCaHB1s+F1fZQoaAZoCWgPQwgOh6WBn1xxQJSGlFKUaBVL52gWR0C0gpmi1y/9dX2UKGgGaAloD0MIXTRkPIrSckCUhpRSlGgVTQcBaBZHQLSCydLQHA11fZQoaAZoCWgPQwiF61G4HjpuQJSGlFKUaBVL+GgWR0C0gskdJaq0dX2UKGgGaAloD0MI1NFxNXJockCUhpRSlGgVS+BoFkdAtILwJ8fFJnV9lChoBmgJaA9DCC1b64sE7nFAlIaUUpRoFUvXaBZHQLSDQzw+dLB1fZQoaAZoCWgPQwgrUIvBg9hwQJSGlFKUaBVL52gWR0C0g1bh3qzJdX2UKGgGaAloD0MI0sYRa3EZc0CUhpRSlGgVS+doFkdAtINlgZ0jknV9lChoBmgJaA9DCLdB7be2uHFAlIaUUpRoFUv1aBZHQLSDjICEHt51fZQoaAZoCWgPQwhzZyYYDu1wQJSGlFKUaBVNAAFoFkdAtIOkW3z+WHV9lChoBmgJaA9DCB/axwo+JnBAlIaUUpRoFU0IAWgWR0C0g8mpuMuOdX2UKGgGaAloD0MIE0azsv3Kc0CUhpRSlGgVS+VoFkdAtIQWJuVHF3V9lChoBmgJaA9DCFBTy9Y6vHJAlIaUUpRoFUv5aBZHQLSEJog3cYZ1fZQoaAZoCWgPQwiX4T/dwFByQJSGlFKUaBVL9GgWR0C0hC7xNIsidX2UKGgGaAloD0MIZohjXRx1cUCUhpRSlGgVTRwBaBZHQLSETYvnKW91fZQoaAZoCWgPQwjzID1FjrNxQJSGlFKUaBVL72gWR0C0hFTtw71adX2UKGgGaAloD0MIuFz92CSMc0CUhpRSlGgVS+doFkdAtIRyiQDFInV9lChoBmgJaA9DCOaw+47h12tAlIaUUpRoFU16AmgWR0C0hHcRtgrpdX2UKGgGaAloD0MINo/DYP4aTkCUhpRSlGgVS6hoFkdAtISSxPfsNXV9lChoBmgJaA9DCF/QQgIGpHFAlIaUUpRoFUvlaBZHQLSEkhakhzN1fZQoaAZoCWgPQwi4WbxYGDpkQJSGlFKUaBVN6ANoFkdAtIS2wxFiKHV9lChoBmgJaA9DCJYJv9SP1HFAlIaUUpRoFU0eAWgWR0C0hMjmbLEDdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
|
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
ppo-LunarLander-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a08a5f4c4dde8254c4ec3422b535680c4c1b9175f1dfa0a799cfb90dc9e635c9
|
3 |
size 84893
|
ppo-LunarLander-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c424eaaa05f031aa5b01d506d1cc1f30d88c72a1a1292e640972c161bd929fd1
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0399f2ada6627b89347d38f6887b860e05cb661325ff53faeeba246d56497d92
|
3 |
+
size 193033
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 275.7639563943052, "std_reward": 26.015156321854953, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-04T20:56:55.816967"}
|