Overview
This model, elucidator8918/clinical-ehr-prototype-0.2_GGUF is a Q4_K_M type GGUF and is tailored for clinical documentation, based on the Mistral-7B-Instruct-v0.3-sharded architecture fine-tuned on the Asclepius-Synthetic-Clinical-Notes dataset.
Key Information
- Model Name: Mistral-7B-Instruct-v0.3-sharded
- Fine-tuned Model Name: elucidator8918/clinical-ehr-prototype-0.2_GGUF
- Dataset: starmpcc/Asclepius-Synthetic-Clinical-Notes
- Language: English (en)
Model Details
LoRA Parameters (QLoRA):
- LoRA attention dimension: 64
- Alpha parameter for LoRA scaling: 16
- Dropout probability for LoRA layers: 0.1
bitsandbytes Parameters:
- Activate 4-bit precision base model loading
- Compute dtype for 4-bit base models: float16
- Quantization type: nf4
- Activate nested quantization for 4-bit base models: No
TrainingArguments Parameters:
- Number of training epochs: 1
- Batch size per GPU for training: 4
- Batch size per GPU for evaluation: 4
- Gradient accumulation steps: 1
- Enable gradient checkpointing: Yes
- Maximum gradient norm: 0.3
- Initial learning rate: 2e-4
- Weight decay: 0.001
- Optimizer: paged_adamw_32bit
- Learning rate scheduler type: cosine
- Warm-up ratio: 0.03
- Group sequences into batches with the same length: Yes
License
This model is released under the MIT License.
- Downloads last month
- 2