metadata
tags: autonlp
language: unk
widget:
- text: I love AutoNLP 🤗
datasets:
- emekaboris/autonlp-data-new_tx
co2_eq_emissions: 3.842950628218143
Model Trained Using AutoNLP
- Problem type: Multi-class Classification
- Model ID: 607517182
- CO2 Emissions (in grams): 3.842950628218143
Validation Metrics
- Loss: 0.4033123552799225
- Accuracy: 0.8679706601466992
- Macro F1: 0.719846919916469
- Micro F1: 0.8679706601466993
- Weighted F1: 0.8622411469250695
- Macro Precision: 0.725309168791155
- Micro Precision: 0.8679706601466992
- Weighted Precision: 0.8604370906049568
- Macro Recall: 0.7216672806300003
- Micro Recall: 0.8679706601466992
- Weighted Recall: 0.8679706601466992
Usage
You can use cURL to access this model:
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/emekaboris/autonlp-new_tx-607517182
Or Python API:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("emekaboris/autonlp-new_tx-607517182", use_auth_token=True)
inputs = tokenizer("I love AutoNLP", return_tensors="pt")
outputs = model(**inputs)