emilys's picture
update model card README.md
740b982
metadata
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: twitter-roberta-base-CoNLL
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.953111963957951
          - name: Recall
            type: recall
            value: 0.9612924941097274
          - name: F1
            type: f1
            value: 0.9571847507331379
          - name: Accuracy
            type: accuracy
            value: 0.9925820645613489

twitter-roberta-base-CoNLL

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0423
  • Precision: 0.9531
  • Recall: 0.9613
  • F1: 0.9572
  • Accuracy: 0.9926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 64
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.11 25 0.2063 0.6517 0.6659 0.6587 0.9386
No log 0.23 50 0.0810 0.8373 0.8766 0.8565 0.9771
No log 0.34 75 0.0651 0.8937 0.9058 0.8997 0.9827
No log 0.45 100 0.0537 0.9014 0.9135 0.9074 0.9849
No log 0.57 125 0.0464 0.9097 0.9244 0.9170 0.9867
No log 0.68 150 0.0423 0.9243 0.9350 0.9296 0.9885
No log 0.8 175 0.0381 0.9250 0.9438 0.9343 0.9900
No log 0.91 200 0.0388 0.9264 0.9446 0.9354 0.9896
No log 1.02 225 0.0394 0.9328 0.9441 0.9384 0.9898
No log 1.14 250 0.0423 0.9348 0.9458 0.9403 0.9896
No log 1.25 275 0.0432 0.9304 0.9406 0.9355 0.9892
No log 1.36 300 0.0382 0.9393 0.9473 0.9433 0.9901
No log 1.48 325 0.0381 0.9326 0.9504 0.9414 0.9901
No log 1.59 350 0.0387 0.9337 0.9524 0.9429 0.9902
No log 1.7 375 0.0365 0.9404 0.9475 0.9439 0.9901
No log 1.82 400 0.0382 0.9431 0.9517 0.9474 0.9905
No log 1.93 425 0.0373 0.9399 0.9524 0.9461 0.9903
No log 2.05 450 0.0367 0.9440 0.9556 0.9497 0.9910
No log 2.16 475 0.0396 0.9400 0.9551 0.9475 0.9907
0.0771 2.27 500 0.0353 0.9442 0.9574 0.9508 0.9912
0.0771 2.39 525 0.0394 0.9401 0.9507 0.9454 0.9906
0.0771 2.5 550 0.0370 0.9447 0.9522 0.9485 0.9910
0.0771 2.61 575 0.0352 0.9404 0.9541 0.9472 0.9908
0.0771 2.73 600 0.0386 0.9345 0.9554 0.9448 0.9908
0.0771 2.84 625 0.0366 0.9428 0.9576 0.9502 0.9916
0.0771 2.95 650 0.0353 0.9427 0.9546 0.9486 0.9913
0.0771 3.07 675 0.0359 0.9412 0.9544 0.9478 0.9911
0.0771 3.18 700 0.0356 0.9476 0.9593 0.9534 0.9920
0.0771 3.3 725 0.0345 0.9484 0.9586 0.9535 0.9918
0.0771 3.41 750 0.0345 0.9427 0.9557 0.9492 0.9916
0.0771 3.52 775 0.0364 0.9389 0.9569 0.9478 0.9914
0.0771 3.64 800 0.0360 0.9430 0.9584 0.9507 0.9915
0.0771 3.75 825 0.0387 0.9458 0.9552 0.9505 0.9915
0.0771 3.86 850 0.0347 0.9468 0.9576 0.9521 0.9917
0.0771 3.98 875 0.0357 0.9445 0.9574 0.9509 0.9915
0.0771 4.09 900 0.0382 0.9464 0.9578 0.9521 0.9918
0.0771 4.2 925 0.0391 0.9475 0.9562 0.9518 0.9918
0.0771 4.32 950 0.0428 0.9466 0.9547 0.9506 0.9912
0.0771 4.43 975 0.0404 0.9459 0.9554 0.9506 0.9913
0.0118 4.55 1000 0.0403 0.9375 0.9549 0.9461 0.9909
0.0118 4.66 1025 0.0369 0.9482 0.9586 0.9534 0.9919
0.0118 4.77 1050 0.0374 0.9457 0.9584 0.9520 0.9918
0.0118 4.89 1075 0.0359 0.9507 0.9571 0.9539 0.9923
0.0118 5.0 1100 0.0373 0.9453 0.9594 0.9523 0.9919
0.0118 5.11 1125 0.0370 0.9499 0.9594 0.9546 0.9924
0.0118 5.23 1150 0.0388 0.9510 0.9601 0.9555 0.9922
0.0118 5.34 1175 0.0395 0.9486 0.9559 0.9522 0.9920
0.0118 5.45 1200 0.0391 0.9495 0.9591 0.9543 0.9924
0.0118 5.57 1225 0.0378 0.9517 0.9588 0.9552 0.9923
0.0118 5.68 1250 0.0388 0.9515 0.9615 0.9565 0.9924
0.0118 5.8 1275 0.0384 0.9512 0.9610 0.9560 0.9924
0.0118 5.91 1300 0.0395 0.9530 0.9613 0.9571 0.9924
0.0118 6.02 1325 0.0408 0.9499 0.9569 0.9534 0.9919
0.0118 6.14 1350 0.0412 0.9481 0.9616 0.9548 0.9922
0.0118 6.25 1375 0.0413 0.9521 0.9591 0.9556 0.9924
0.0118 6.36 1400 0.0412 0.9466 0.9584 0.9525 0.9917
0.0118 6.48 1425 0.0405 0.9504 0.9608 0.9556 0.9921
0.0118 6.59 1450 0.0400 0.9517 0.9615 0.9566 0.9925
0.0118 6.7 1475 0.0398 0.9510 0.9594 0.9552 0.9923
0.0049 6.82 1500 0.0395 0.9523 0.9615 0.9569 0.9925
0.0049 6.93 1525 0.0392 0.9520 0.9623 0.9571 0.9927
0.0049 7.05 1550 0.0390 0.9511 0.9593 0.9552 0.9923
0.0049 7.16 1575 0.0393 0.9520 0.9611 0.9565 0.9925
0.0049 7.27 1600 0.0389 0.9512 0.9613 0.9562 0.9925
0.0049 7.39 1625 0.0405 0.9518 0.9613 0.9565 0.9924
0.0049 7.5 1650 0.0410 0.9512 0.9606 0.9559 0.9925
0.0049 7.61 1675 0.0408 0.9526 0.9613 0.9569 0.9925
0.0049 7.73 1700 0.0436 0.9482 0.9610 0.9545 0.9922
0.0049 7.84 1725 0.0419 0.9495 0.9625 0.9560 0.9924
0.0049 7.95 1750 0.0429 0.9525 0.9618 0.9571 0.9926
0.0049 8.07 1775 0.0419 0.9509 0.9615 0.9562 0.9924
0.0049 8.18 1800 0.0422 0.9510 0.9601 0.9555 0.9923
0.0049 8.3 1825 0.0417 0.9521 0.9603 0.9562 0.9924
0.0049 8.41 1850 0.0415 0.9529 0.9611 0.9570 0.9925
0.0049 8.52 1875 0.0416 0.9523 0.9611 0.9567 0.9924
0.0049 8.64 1900 0.0419 0.9504 0.9608 0.9556 0.9922
0.0049 8.75 1925 0.0417 0.9520 0.9610 0.9564 0.9924
0.0049 8.86 1950 0.0419 0.9535 0.9621 0.9578 0.9926
0.0049 8.98 1975 0.0422 0.9531 0.9620 0.9575 0.9927
0.0022 9.09 2000 0.0423 0.9531 0.9613 0.9572 0.9926
0.0022 9.2 2025 0.0426 0.9520 0.9615 0.9567 0.9925
0.0022 9.32 2050 0.0425 0.9515 0.9606 0.9560 0.9925
0.0022 9.43 2075 0.0422 0.9517 0.9613 0.9565 0.9925
0.0022 9.55 2100 0.0423 0.9513 0.9606 0.9560 0.9925
0.0022 9.66 2125 0.0424 0.9513 0.9605 0.9559 0.9925
0.0022 9.77 2150 0.0423 0.9522 0.9611 0.9566 0.9925
0.0022 9.89 2175 0.0423 0.9522 0.9613 0.9567 0.9925
0.0022 10.0 2200 0.0422 0.9525 0.9616 0.9570 0.9925

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1