|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-cnn-12-6-eval-test-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-eval-test-2 |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 4.7250 |
|
- Rouge1: 31.3552 |
|
- Rouge2: 4.2825 |
|
- Rougel: 15.1982 |
|
- Rougelsum: 27.9577 |
|
- Gen Len: 139.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 4.4419 | 1.0 | 80 | 4.2847 | 30.8184 | 4.024 | 15.5589 | 27.647 | 133.6 | |
|
| 3.5861 | 2.0 | 160 | 4.2721 | 30.7823 | 3.7736 | 14.992 | 28.0105 | 137.1 | |
|
| 2.9885 | 3.0 | 240 | 4.4295 | 30.4747 | 3.8971 | 15.6055 | 27.9916 | 135.5 | |
|
| 2.5254 | 4.0 | 320 | 4.5978 | 31.0505 | 4.1062 | 14.7292 | 27.9009 | 134.2 | |
|
| 2.2404 | 5.0 | 400 | 4.7250 | 31.3552 | 4.2825 | 15.1982 | 27.9577 | 139.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.2.1 |
|
- Tokenizers 0.12.1 |
|
|