anton-l's picture
anton-l HF staff
Upload README.md
8005cda
metadata
license: apache-2.0
language: bas
tags:
  - automatic-speech-recognition
  - common_voice
  - generated_from_trainer
  - bas
  - robust-speech-event
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: wav2vec2-xls-r-300m-bas-CV8-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8
          type: mozilla-foundation/common_voice_8_0
          args: bas
        metrics:
          - name: Test WER
            type: wer
            value: 56.97

wav2vec2-xls-r-300m-bas-CV8-v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6121
  • Wer: 0.5697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 90
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.5211 16.13 500 1.2661 0.9153
0.7026 32.25 1000 0.6245 0.6516
0.3752 48.38 1500 0.6039 0.6148
0.2752 64.51 2000 0.6080 0.5808
0.2155 80.63 2500 0.6121 0.5697

Framework versions

  • Transformers 4.11.3
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.10.3