entropy's picture
Update README.md
b2975b7
|
raw
history blame
3.78 kB
---
tags:
- chemistry
- molecule
- drug
---
# Roberta Zinc Decoder
This model is a GPT2 decoder model designed to reconstruct SMILES strings from embeddings created by the
[roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model. The decoder model was
trained on 30m compounds from the [ZINC Database](https://zinc.docking.org/).
The decoder model conditions generation on mean pooled embeddings from the encoder model. Mean pooled
embeddings are used to allow for integration with vector databases, which require fixed length embeddings.
Condition embeddings are passed to the decoder model using the `encoder_hidden_states` attribute.
The standard `GPT2LMHeadModel` does not support generation with encoder hidden states, so this repo
includes a custom `ConditionalGPT2LMHeadModel`. See example below for how to instantiate the model.
```python
import torch
from transformers import AutoModelForCausalLM, RobertaTokenizerFast, RobertaForMaskedLM, DataCollatorWithPadding
tokenizer = RobertaTokenizerFast.from_pretrained("entropy/roberta_zinc_480m", max_len=256)
collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt')
encoder_model = RobertaForMaskedLM.from_pretrained('entropy/roberta_zinc_480m')
encoder_model.eval();
commit_hash = '0ba58478f467056fe33003d7d91644ecede695a7'
decoder_model = AutoModelForCausalLM.from_pretrained("entropy/roberta_zinc_decoder",
trust_remote_code=True, revision=commit_hash)
decoder_model.eval();
smiles = ['Brc1cc2c(NCc3ccccc3)ncnc2s1',
'Brc1cc2c(NCc3ccccn3)ncnc2s1',
'Brc1cc2c(NCc3cccs3)ncnc2s1',
'Brc1cc2c(NCc3ccncc3)ncnc2s1',
'Brc1cc2c(Nc3ccccc3)ncnc2s1']
inputs = collator(tokenizer(smiles))
outputs = encoder_model(**inputs, output_hidden_states=True)
full_embeddings = outputs[1][-1]
mask = inputs['attention_mask']
mean_embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1))
decoder_inputs = torch.tensor([[tokenizer.bos_token_id] for i in range(len(smiles))])
hidden_states = mean_embeddings[:,None] # hidden states shape (bs, 1, -1)
gen = decoder_model.generate(
decoder_inputs,
encoder_hidden_states=hidden_states,
do_sample=False, # greedy decoding is recommended
max_length=100,
temperature=1.,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
)
reconstructed_smiles = tokenizer.batch_decode(gen, skip_special_tokens=True)
```
## Model Performance
The decoder model was evaluated on a test set of 1m compounds from ZINC. Compounds
were encoded with the [roberta_zinc_480m](https://huggingface.co/entropy/roberta_zinc_480m) model
and reconstructed with the decoder model.
The following metrics are computed:
* `exact_match` - percent of inputs exactly reconstructed
* `token_accuracy` - percent of output tokens exactly matching input tokens (excluding padding)
* `valid_structure` - percent of generated outputs that resolved to a valid SMILES string
* `tanimoto` - tanimoto similarity between inputs and generated outputs. Excludes invalid structures
* `cos_sim` - cosine similarity between input encoder embeddings and output encoder embeddings
`eval_type=full` reports metrics for the full 1m compound test set.
`eval_type=failed` subsets metrics for generated outputs that failed to exactly replicate the inputs.
|eval_type|exact_match|token_accuracy|valid_structure|tanimoto|cos_sim |
|---------|-----------|--------------|---------------|--------|--------|
|full |0.948277 |0.990704 |0.994278 |0.987698|0.998224|
|failed |0.000000 |0.820293 |0.889372 |0.734097|0.965668|
---
license: mit
---